Ground-penetrating radar: a technique for investigating the burrow structures of fossorial vertebrates

1996 ◽  
Vol 23 (5) ◽  
pp. 519 ◽  
Author(s):  
P Stott

Ground-penetrating radar (GPR) was tested as a technique to map the subterranean tunnels of the European rabbit, as a representative fossorial vertebrate. The technique readily located tunnels separated by at least 1 m in a dry coarse compacted sandy soil, but images of tunnels less than 0.4 m apart were fused. GPR was of no use in a highly saline, sandy light-clay soil. GPR is a non-invasive technique by which the routes of isolated blind-ending tunnels of any length can be ascertained, even in unstable soil.

2016 ◽  
Vol 17 (4) ◽  
pp. 362-370 ◽  
Author(s):  
Alexander Krainyukov ◽  
Igor Lyaksa

Abstract The paper is devoted to using ground penetrating radar (GPR) for the detection of tree roots in an urban area, since GPR allow detect the hidden objects in non invasive way. It is necessary exactly to know the growth direction, thickness and depth of the roots of the tree to confidently assert about the tree root influence on the technical condition of engineering objects and structures: of the buildings, of pavements, of roadway, of engineering communications and etc. The aim of the given research was experimentally to evaluation the possibilities of detection of tree roots in an urban area with the use of GPR on frequency 400 MHz and of algorithms of secondary processing of GPR signals. Results of interpretation of radar profile and evacuation of soil around tree show the possibility of detection of the tree roots and the determination of their parameters using one or two radar concentric profiles.


2014 ◽  
Vol 31 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Fabian Welc ◽  
Radosław Mieszkowski ◽  
Sebastian Kowalczyk ◽  
Jerzy Trzciński

Abstract This paper presents the preliminary results of ground penetrating radar sounding applied at the desert archaeological site in Saqqara (Egypt). The survey was carried out in 2012 within a project realized by Institute of Archaeology, Cardinal Stefan Wyszyński University in Warsaw and the Faculty of Geology, University of Warsaw. One of the key aims of the research was testing the application of ground penetrating radar to non-invasive surveys of desert archaeological sites. Radargrams obtained for area of so called the Dry Moat channel surrounding the Step Pyramid complex have shown the geological structure of its filling. It comprises among others debris-sand conglomerate of diluval origin characterized by a significant content of the clay fraction and clay minerals. Such lithological content strongly attenuate the propagation of EM waves, restricting the depth range of the GPR survey. The conducted geophysical prospection west to the Step Pyramid in Saqqara has confirmed the high applicability of the GPR method in non-invasive studies of vast architectural structures, such as the monumental ditch surrounding the Step Pyramid known as the Dry Moat. It should summarised that high horizontal resolution obtained during GPR survey is a result of local geological structure of the searched area, i.e. strong lithological contrast of the sediments filling the Dry Moat, which, depending on their mineralogical composition


Author(s):  
Hamed Faghihi Kashani ◽  
Carlton L. Ho ◽  
Charles P. Oden ◽  
Stanley S. Smith

In recent years there has been an increase in the knowledge of, and need for, non-invasive monitoring of ballast in order to identify the problematic sections of track and decrease the maintenance cost. Various technologies such as Ground Penetrating Radar (GPR) are becoming accepted for investigating the condition of ballast. However since these techniques were not originally developed for engineering applications, their applicability in ballast evaluations can be sometimes uncertain. Continued empirical studies and condition specific calibrations are needed to demonstrate repeatable and quantifiable results. In this study large-scale track models with trapezoidal section area were constructed at the University of Massachusetts to investigate the effects of breakdown fouling, and the effects of changing geotechnical properties on GPR traces. This paper presents the design and construction of large scale track models, and methods used for GPR data collection. GPR data are presented in this paper that demonstrate sensitivity to the track model properties and variables. In particular, the experiments are being used to evaluate changes in GPR data with changing geotechnical properties of the ballast such as density, water content, grain size distribution (GSD), and fouling percentage.


2003 ◽  
Vol 281 (1-2) ◽  
pp. 55-69 ◽  
Author(s):  
Michael J. Bevan ◽  
Anthony L. Endres ◽  
David L. Rudolph ◽  
Gary Parkin

2019 ◽  
Vol 436 (1-2) ◽  
pp. 623-639 ◽  
Author(s):  
Xinbo Liu ◽  
Xihong Cui ◽  
Li Guo ◽  
Jin Chen ◽  
Wentao Li ◽  
...  

2010 ◽  
Vol 24 ◽  
pp. 69-82 ◽  
Author(s):  
L. Nuzzo ◽  
A. Calia ◽  
D. Liberatore ◽  
N. Masini ◽  
E. Rizzo

Abstract. The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.


Sign in / Sign up

Export Citation Format

Share Document