scholarly journals Inhibition of a vaccine-induced anti-tumor B cell response by soluble protein antigen in the absence of continuing T cell help

2005 ◽  
Vol 102 (31) ◽  
pp. 10987-10992 ◽  
Author(s):  
N. Savelyeva ◽  
C. A. King ◽  
E. S. Vitetta ◽  
F. K. Stevenson
1983 ◽  
Vol 158 (6) ◽  
pp. 2171-2176 ◽  
Author(s):  
L M Hutt-Fletcher ◽  
N Balachandran ◽  
M H Elkins

Human cytomegalovirus is shown to be a nonspecific polyclonal B cell activator. The B cell response is independent of virus replication and requires little, if any, T cell help.


Vaccine ◽  
2009 ◽  
Vol 27 (35) ◽  
pp. 4818-4825 ◽  
Author(s):  
Thi Kim Anh Nguyen ◽  
Ad P. Koets ◽  
Wiebren J. Santema ◽  
Willem van Eden ◽  
Victor P.M.G. Rutten ◽  
...  

2010 ◽  
Vol 392 (1-2) ◽  
pp. 218-223 ◽  
Author(s):  
Hiroyuki Koide ◽  
Tomohiro Asai ◽  
Kentaro Hatanaka ◽  
Shuji Akai ◽  
Takayuki Ishii ◽  
...  

1986 ◽  
Vol 24 (1) ◽  
pp. 21-28 ◽  
Author(s):  
J. PRYJMA ◽  
H.-D. FLAD ◽  
M. GRUBER ◽  
M. ERNST

2021 ◽  
Author(s):  
Samuel Bitoun ◽  
Julien Henry ◽  
Delphine Desjardins ◽  
Christelle Vauloup‐Fellous ◽  
Nicolas Dib ◽  
...  

Author(s):  
Daniel M. Keller ◽  
James E. Swierkosz ◽  
Philippa Marrack ◽  
John W. Kappler

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2235-2235
Author(s):  
W. Nicholas Haining ◽  
J. Evans ◽  
N. Seth ◽  
G. Callaway ◽  
K. Wucherpfennig ◽  
...  

Abstract Vaccination is widely used to improve pathogen-specific immunity in patients post HSCT, but it is not known whether patients can mount an effective T cell response to vaccine antigens (vAg). Moreover the relationship between T and B cell response to vAg has not been studied. We hypothesized that a sufficiently sensitive assay of T cell response to vAg would allow vaccination to be used as a tool to measure immune recovery post HSCT and improve vaccine design. We therefore: (1) developed a flow-cytometry-based approach to quantify and characterize T cells specific for vAg; (2) validated it by measuring T cell immunity to influenza A in normal donors; and (3) characterized the T and B cell response to influenza vaccination in pediatric HSCT patients. PBMC were labeled with CFSE and stimulated in vitro with whole influenza Ag. Ag-specific T cells were sensitively detected by their proliferation (loss of CFSE fluorescence) and simultaneous expression of the activation marker HLA-DR. Proliferating/active T cells could be readily detected after stimulation with influenza A Ag in healthy adult (n=4) and pediatric (n=19) donors but were absent in control conditions. Both CD4+ and CD8+ T cell proliferation was detected in all donors but one, and in children as young as 6mo. Staining with MHC I- and MHC II-tetramers confirmed that the proliferating/active population contained T cells specific for immunodominant CD8+ and CD4+ epitopes, demonstrating that vAg were processed and presented to epitope-specific T cells. To characterize the phenotype of influenza-specific T cell memory, we separated memory and naive CD4+ cells prior to antigen-stimulation. Antigen-experienced (CD45RA−/CCR7−) but not naive (CD45RA+/CCR7+) T cells proliferated to vAg confirming that the assay detected pre-existing influenza-A-specific T cell memory. We next assessed Influenza-A-specific T cell immunity before and after influenza vaccination in five pediatric HSCT recipients (mean age 10.6y, range 5–15y; mean time from transplant 13m, range 3–21m). Prior to vaccination the CD4 proliferation to influenza-A was a mean of 3.3% (range 0.04–11%). Following vaccination CD4 proliferation increased significantly in all patients (mean 19.0%, range 6.9%–31.8%, p=0.02). This increase was specific as proliferation to control Ag was unchanged. Influenza-A CD8+ proliferation also increased in 3 of 5 patients but was not statistically significant for the group consistent with the limited efficacy of soluble vAg in inducing CD8+ T cell response. All patients had detectable influenza-A-specific IgG levels prior to vaccination but despite a T cell response to vaccination in all patients, none had a significant increase in IgG level following vaccination. Only one patient had an IgM response; this patient also had the highest influenza-A-specific CD4 proliferation before and after immunization suggesting that there may be a threshold of T cell response required for a B cell response. Using a novel assay we demonstrate that a T cell response to vaccination can occur without an accompanying B cell response. This assay provides a more sensitive measure of immunity to vaccination and allows vaccine response to be used as a benchmark of strategies to accelerate post-HSCT T cell reconstitution.


Sign in / Sign up

Export Citation Format

Share Document