Rapid T Cell Response to Vaccination Can Occur without Antibody Response in Children Post HSCT.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2235-2235
Author(s):  
W. Nicholas Haining ◽  
J. Evans ◽  
N. Seth ◽  
G. Callaway ◽  
K. Wucherpfennig ◽  
...  

Abstract Vaccination is widely used to improve pathogen-specific immunity in patients post HSCT, but it is not known whether patients can mount an effective T cell response to vaccine antigens (vAg). Moreover the relationship between T and B cell response to vAg has not been studied. We hypothesized that a sufficiently sensitive assay of T cell response to vAg would allow vaccination to be used as a tool to measure immune recovery post HSCT and improve vaccine design. We therefore: (1) developed a flow-cytometry-based approach to quantify and characterize T cells specific for vAg; (2) validated it by measuring T cell immunity to influenza A in normal donors; and (3) characterized the T and B cell response to influenza vaccination in pediatric HSCT patients. PBMC were labeled with CFSE and stimulated in vitro with whole influenza Ag. Ag-specific T cells were sensitively detected by their proliferation (loss of CFSE fluorescence) and simultaneous expression of the activation marker HLA-DR. Proliferating/active T cells could be readily detected after stimulation with influenza A Ag in healthy adult (n=4) and pediatric (n=19) donors but were absent in control conditions. Both CD4+ and CD8+ T cell proliferation was detected in all donors but one, and in children as young as 6mo. Staining with MHC I- and MHC II-tetramers confirmed that the proliferating/active population contained T cells specific for immunodominant CD8+ and CD4+ epitopes, demonstrating that vAg were processed and presented to epitope-specific T cells. To characterize the phenotype of influenza-specific T cell memory, we separated memory and naive CD4+ cells prior to antigen-stimulation. Antigen-experienced (CD45RA−/CCR7−) but not naive (CD45RA+/CCR7+) T cells proliferated to vAg confirming that the assay detected pre-existing influenza-A-specific T cell memory. We next assessed Influenza-A-specific T cell immunity before and after influenza vaccination in five pediatric HSCT recipients (mean age 10.6y, range 5–15y; mean time from transplant 13m, range 3–21m). Prior to vaccination the CD4 proliferation to influenza-A was a mean of 3.3% (range 0.04–11%). Following vaccination CD4 proliferation increased significantly in all patients (mean 19.0%, range 6.9%–31.8%, p=0.02). This increase was specific as proliferation to control Ag was unchanged. Influenza-A CD8+ proliferation also increased in 3 of 5 patients but was not statistically significant for the group consistent with the limited efficacy of soluble vAg in inducing CD8+ T cell response. All patients had detectable influenza-A-specific IgG levels prior to vaccination but despite a T cell response to vaccination in all patients, none had a significant increase in IgG level following vaccination. Only one patient had an IgM response; this patient also had the highest influenza-A-specific CD4 proliferation before and after immunization suggesting that there may be a threshold of T cell response required for a B cell response. Using a novel assay we demonstrate that a T cell response to vaccination can occur without an accompanying B cell response. This assay provides a more sensitive measure of immunity to vaccination and allows vaccine response to be used as a benchmark of strategies to accelerate post-HSCT T cell reconstitution.

1998 ◽  
Vol 72 (1) ◽  
pp. 882-885 ◽  
Author(s):  
David J. Topham ◽  
Peter C. Doherty

ABSTRACT The primary CD8+ T-cell response protected most B-cell-deficient μMT mice against intranasal infection with the HKx31 influenza A virus. Prior exposure did not prevent reinfection upon homologous challenge, and the recall CD8+ T-cell response cleared the virus from the lung within 7 days. Depleting the CD8+ T cells substantially reduced the capacity of these primed mice to deal with the infection, in spite of evidence for established CD4+ T-cell memory. Thus, the control of this relatively mild influenza virus by both primary and secondary CD4+ T-cell responses is relatively inefficient in the absence of B cells and CD8+ T cells.


1973 ◽  
Vol 137 (6) ◽  
pp. 1325-1337 ◽  
Author(s):  
John W. Kappler ◽  
Michael Hoffmann

The kinetics of the in vivo response to SRBC was studied in mouse spleen at both the B cell and T cell levels. The B cell response was assayed by following the appearance of antibody-secreting cells in the spleen using the hemolytic plaque assay. The T cell response was monitored by following the increase in or "priming" of helper activity in the spleen using a quantitative in vitro assay. The role of cellular proliferation in both responses was established with the inhibitor of mitosis, vinblastine. The results show that, although the development of T cell activity precedes that of anti-SRBC PFC by as much as 1 day, T cells lag at least 1 day behind B cells in the onset of cellular proliferation. The evidence suggests either that the helper T cell which proliferates in response to SRBC does so after helping in the initiation of the primary B cell response or that the proliferative T cell response and the initiation of the primary B cell response involve two different subpopulations of T cells.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Facundo Fiocca Vernengo ◽  
Cristian G. Beccaria ◽  
Cintia L. Araujo Furlan ◽  
Jimena Tosello Boari ◽  
Laura Almada ◽  
...  

ABSTRACT Treatment with anti-CD20, used in many diseases in which B cells play a pathogenic role, has been associated with susceptibility to intracellular infections. Here, we studied the effect of anti-CD20 injection on CD8+ T cell immunity using an experimental model of Trypanosoma cruzi infection, in which CD8+ T cells play a pivotal role. C57BL/6 mice were treated with anti-CD20 for B cell depletion prior to T. cruzi infection. Infected anti-CD20-treated mice exhibited a CD8+ T cell response with a conserved expansion phase followed by an early contraction, resulting in a strong reduction in total and parasite-specific CD8+ T cell numbers at 20 days postinfection. Anti-CD20 injection increased the frequency of apoptotic CD8+ T cells, decreased the number of effector and memory CD8+ T cells, and reduced the frequency of proliferating and cytokine-producing CD8+ T cells. Accordingly, infected anti-CD20-treated mice presented lower cytotoxicity of T. cruzi peptide-pulsed target cells in vivo. All of these alterations in CD8+ T cell immunity were associated with increased tissue parasitism. Anti-CD20 injection also dampened the CD8+ T cell response, when this had already been generated, indicating that B cells were involved in the maintenance rather than the induction of CD8+ T cell immunity. Anti-CD20 injection also resulted in a marked reduction in the frequency of interleukin-6 (IL-6)- and IL-17A-producing cells, and recombinant IL-17A (rIL-17A) injection partially restored the CD8+ T cell response in infected anti-CD20-treated mice. Thus, anti-CD20 reduced CD8+ T cell immunity, and IL-17A is a candidate for rescuing deficient responses either directly or indirectly. IMPORTANCE Monoclonal antibody targeting the CD20 antigen on B cells is used to treat the majority of non-Hodgkin lymphoma patients and some autoimmune disorders. This therapy generates adverse effects, notably opportunistic infections and activation of viruses from latency. Here, using the infection murine model with the intracellular parasite Trypanosoma cruzi, we report that anti-CD20 treatment affects not only B cell responses but also CD8+ T cell responses, representing the most important immune effectors involved in control of intracellular pathogens. Anti-CD20 treatment, directly or indirectly, affects cytotoxic T cell number and function, and this deficient response was rescued by the cytokine IL-17A. The identification of IL-17A as the cytokine capable of reversing the poor response of CD8+ T cells provides information about a potential therapeutic treatment aimed at enhancing defective immunity induced by B cell depletion.


2019 ◽  
Author(s):  
Facundo Fiocca Vernengo ◽  
Cristian G. Beccaria ◽  
Cintia L. Araujo Furlan ◽  
Jimena Tosello Boari ◽  
Laura Almada ◽  
...  

AbstractTreatment with anti-CD20, used in many diseases in which B cells play a pathogenic role, has been associated with susceptibility to intracellular infections. Here, we studied the effect of anti-CD20 injection on CD8+ T cell immunity using an experimental model of Trypanosoma cruzi infection, in which CD8+ T cells play a pivotal role. C57BL/6 mice were treated with anti-CD20 for B cell depletion prior to T. cruzi infection. Infected anti-CD20-treated mice exhibited a CD8+ T cell response with a conserved expansion phase followed by an early contraction, resulting in a strong reduction in total and parasite-specific CD8+ T cells at 20 days postinfection. Anti-CD20 injection decreased the number of effector and memory CD8+ T cells and reduced the frequency of proliferating and cytokine producing CD8+ T cells. Accordingly, infected anti-CD20-treated mice presented a lower cytotoxicity of T. cruzi peptide-pulsed target cells in vivo. All of these alterations in CD8+ T cell immunity were associated with increased tissue parasitism. Anti-CD20 injection also dampened an established CD8+ T cell response, indicating that B cells were involved in the maintenance rather than the induction of CD8+ T cell immunity. Anti-CD20 injection also resulted in a marked reduction in the frequency of IL-6- and IL-17A-producing cells, and only rIL-17A injection partially restored the CD8+ T cell response in infected anti-CD20-treated mice. Thus, anti-CD20 reduced CD8+ T cell immunity, and IL-17A is a candidate for rescuing deficient responses either directly or indirectly.ImportanceMonoclonal antibody targeting the CD20 antigen on B cells is used to treat the majority of Non-Hodgkin lymphoma patients and some autoimmune disorders. This therapy generates adverse effects, notably opportunistic infections and activation of viruses from latency. Here, using the infection murine model with the intracellular parasite Trypanosoma cruzi, we report that anti-CD20 treatment not only affects B cell response but also CD8+ T cells, the most important immune effectors involved in control of intracellular pathogens. Anti-CD20 treatment, directly or indirectly, affects cytotoxic T cell number and function and this deficient response was rescued by the cytokine IL-17A. The identification of IL-17A as the cytokine capable of reversing the poor response of CD8+ T cells provide information about a potential therapeutic treatment aimed at enhancing defective immunity induced by B cell depletion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda W. K. AuYeung ◽  
Robert C. Mould ◽  
Ashley A. Stegelmeier ◽  
Jacob P. van Vloten ◽  
Khalil Karimi ◽  
...  

AbstractVaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.


2018 ◽  
Author(s):  
Xiaoyan Zheng ◽  
Jennifer Dora Oduro ◽  
Julia Désirée Boehme ◽  
Lisa Borkner ◽  
Thomas Ebensen ◽  
...  

Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2668-2668
Author(s):  
Abdul Tawab ◽  
Yoshiyuki Takahashi ◽  
Childs Richard ◽  
Kurlander J. Roger

Abstract In vitro stimulation of human peripheral blood B cells with recombinant IL-4 and CD40 ligand (CD40L) markedly increases their expression of MHC and costimulatory molecules, thus enhancing antigenic peptide presentation to T cells. Because these cells proliferate extensively in vitro (unlike monocytes or dendritic cells), they represent a promising and convenient reagent for the generation and maintenance of antigen-specific T cells for use in a variety of experimental or therapeutic settings. However, the impact of this type of B cell APC on cytokine production by responder T cells has hitherto not been examined. To address this issue, we stimulated normal human T cells with either allogeneic B cells (generated in vitro) or with MNCs obtained from the same donor. After 7 days, T cells were washed and re-challenged with the same APCs. The resulting alloreactive cytokine response was measured using quantitative ELISPOT methods and expressed as the frequencies of IFN-γ, IL-4, and IL-5 producing cells per thousand responder cells added. B cell- and MNC-primed cell lines both produced vigorous lymphokine responses, but B cell-stimulated T cells consistently produced more IL-5 spots (mean of 265 vs. 98/1000 responders, p<0.002) and fewer IFN-γ spots (163 vs 386/1000 cells, p<0.005) than MNC-stimulated cells. Further, the ratio of IFN-γ to IL-5 spots was almost ten-fold lower in B cell-stimulated cultures compared to MNC-induced cultures (0.67 vs. 5.2, p<0.001). ELISPOT studies assessing the ratio of IFN-γ to IL-4 spots and ELISA assays comparing IFN-γ and IL-5 levels from culture supernatants demonstrated the same pattern of marked type 2 skewing by B cells. This pattern was unaffected by the presence of anti-IL-4 antibody suggesting type 2 skewing was not mediated by IL-4. Cytokine skewing produced by B cells or MNC could be partially reversed by swapping MNC and B cells during re-stimulation on day 7, but this plasticity was markedly reduced after 3 (weekly) cycles of B cell or MNC re-stimulation in vitro. Type 2 skewing by B cells was enhanced when monocytes were removed from responder T cell populations by either depleting CD14+ positive cells or by positive selection of T cells prior to stimulation. In contrast, type 2 polarization could be prevented using recombinant IL-12. Not all cells of B-cell origin share the same propensity to type 2 skewing observed with IL-4/CD40L-stimulated B cells; under identical conditions, EBV-transformed B cells stimulated alloimmune T cells to produce a strong type 1 cytokine response comparable to that produced by MNCs. In summary, IL-4/CD40L-stimulated B cells strongly promote a type 2 T cell response during primary alloimmune challenge; this skewing can become fixed after repeated B cell stimulation. Investigators using these cells as APC should be aware of this potential phenomenon, particularly during primary T cell responses. It is also important to consider the factors described above that may exacerbate or ameliorate this effect.


2000 ◽  
Vol 68 (11) ◽  
pp. 6223-6232 ◽  
Author(s):  
Magali Moretto ◽  
Lori Casciotti ◽  
Brigit Durell ◽  
Imtiaz A. Khan

ABSTRACT Cell-mediated immunity has been reported to play an important role in defense against Encephalitozoon cuniculi infection. Previous studies from our laboratory have underlined the importance of cytotoxic CD8+ T lymphocytes (CTL) in survival of mice infected with E. cuniculi. In the present study, immune response against E. cuniculi infection in CD4+T-cell-deficient mice was evaluated. Similar to resistant wild-type animals, CD4−/− mice were able to resolve E. cuniculi infection even at a very high challenge dose (5 × 107 spores/mouse). Tissues from infected CD4−/− mice did not exhibit higher parasite loads in comparison to the parental wild-type mice. Conversely, at day 21 postinfection, susceptible CD8−/− mice had 1014 times more parasites in the liver compared to control wild-type mice. Induction of the CD8+ T-cell response in CD4−/− mice against E. cuniculi infection was studied. Interestingly, a normal antigen-specific CD8+T-cell response to E. cuniculi infection was observed in CD4−/− mice (precursor proliferation frequency, 1/2.5 × 104 versus 1/104 in wild-type controls). Lack of CD4+ T cells did not alter the magnitude of the antigen-specific CTL response (precursor CTL frequency; 1/1.4 × 104 in CD4−/− mice versus 1/3 × 104 in control mice). Adoptive transfer of immune CD8+ T cells from both CD4−/− and wild-type animals prevented the mortality in CD8−/− mice.E. cuniculi infection thus offers an example of an intracellular parasitic infection where CD8+ T-cell immunity can be induced in the absence of CD4+ T cells.


2021 ◽  
Author(s):  
Patricia Kaaijk ◽  
Veronica Olivo Pimentel ◽  
Maarten E. Emmelot ◽  
Martien Poelen ◽  
Alper Cevirgel ◽  
...  

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to considerable morbidity/mortality worldwide, but most infections, especially among children, have a mild course. However, it remains largely unknown whether infected children develop cellular immune memory. Methods: To determine whether a memory T cell response is being developed as an indicator for long-term immune protection, we performed a longitudinal assessment of the SARS-CoV-2-specific T cell response by IFN-γ ELISPOT and activation marker expression analyses of peripheral blood samples from children and adults with mild-to-moderate COVID-19. Results: Upon stimulation of PBMCs with heat-inactivated SARS-CoV-2 or overlapping peptides of spike (S-SARS-CoV-2) and nucleocapsid proteins, we found S-SARS-CoV-2-specific IFN-ɣ T cell responses in most infected children (83%) and all adults (100%) that were absent in unexposed controls. Frequencies of SARS-CoV-2-specific T cells were higher in infected adults, especially in those with moderate symptoms, compared to infected children. The S-SARS-CoV-2 IFN-ɣ T cell response correlated with S1-SARS-CoV-2-specific serum IgM, IgG, and IgA antibody concentrations. Predominantly, effector memory CD4+ T cells of a Th1 phenotype were activated upon exposure to SARS-CoV-2 antigens, which persisted for 4-8 weeks after symptom onset. We detected very low frequencies of SARS-CoV-2-reactive CD8+ T cells in these individuals. Conclusions: Our data indicate that an antigen-specific memory CD4+ T cell response is induced in children and adults with mild SARS-CoV-2 infection. T cell immunity induced after mild COVID-19 could contribute to protection against re-infection.


2021 ◽  
Author(s):  
Samuel Bitoun ◽  
Julien Henry ◽  
Delphine Desjardins ◽  
Christelle Vauloup‐Fellous ◽  
Nicolas Dib ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document