scholarly journals Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations

2006 ◽  
Vol 103 (20) ◽  
pp. 7664-7669 ◽  
Author(s):  
W. Zheng ◽  
B. R. Brooks ◽  
D. Thirumalai
2021 ◽  
Vol 7 (3) ◽  
pp. 34
Author(s):  
Loris Giovannini ◽  
Barry W. Farmer ◽  
Justin S. Woods ◽  
Ali Frotanpour ◽  
Lance E. De Long ◽  
...  

We present a new formulation of the dynamical matrix method for computing the magnetic normal modes of a large system, resulting in a highly scalable approach. The motion equation, which takes into account external field, dipolar and ferromagnetic exchange interactions, is rewritten in the form of a generalized eigenvalue problem without any additional approximation. For its numerical implementation several solvers have been explored, along with preconditioning methods. This reformulation was conceived to extend the study of magnetization dynamics to a broader class of finer-mesh systems, such as three-dimensional, irregular or defective structures, which in recent times raised the interest among researchers. To test its effectiveness, we applied the method to investigate the magnetization dynamics of a hexagonal artificial spin-ice as a function of a geometric distortion parameter following the Fibonacci sequence. We found several important features characterizing the low frequency spin modes as the geometric distortion is gradually increased.


2005 ◽  
Vol 34 (7) ◽  
pp. 881-889 ◽  
Author(s):  
Antonio Cupane ◽  
Marco Cammarata ◽  
Lorenzo Cordone ◽  
Maurizio Leone ◽  
Eugenio Vitrano ◽  
...  

Ocean Science ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 439-453 ◽  
Author(s):  
J. Park ◽  
W. V. Sweet ◽  
R. Heitsenrether

Abstract. Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey, California, identifies harbor modes between 10 and 120 s that are attributed to specific geographic features. It is found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies with periods between 15 and 60 min, modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low-frequency oscillations support the idea that a persistent anticyclonic mesoscale gyre adjacent to the bay is a potential mode driver, while discounting other sources.


2020 ◽  
Vol 78 (4) ◽  
pp. 229-261
Author(s):  
Robert O. Reid

Essentially two classes of free edge waves can exist on a sloping continental shelf in the presence of Coriolis force. For small longshore wave length, fundamental waves of the first class behave like Stokes edge waves. However, for great wave lengths (of several hundred kilometers or more) the characteristics of the first class are significantly altered. In the northern hemisphere the phase speed for waves moving to the right (facing shore from the sea) exceeds the speed for waves which move to the left. Also, the group velocity for a given edge wave mode has a finite upper limit. Waves of the second class are essentially quasigeostrophic boundary waves with very low frequency and, like Kelvin waves, move only to the left (again facing shore from the sea). Unlike Stokes edge waves, those of the quasigeostrophic class are associated with large vorticity. Examination of the formal solution for forced edge waves indicates that those of the second class may be excited significantly by a wind stress vortex. Also, in contrast to the conclusion of Greenspan (1956), it is proposed that a hurricane can effectively excite the higher order edge wave modes in addition to the fundamental if wind stress is considered.


2018 ◽  
Vol 89 (4) ◽  
pp. 1488-1496 ◽  
Author(s):  
M. Schimmel ◽  
E. Stutzmann ◽  
S. Ventosa

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1138 ◽  
Author(s):  
Jianwang Shao ◽  
Tao Zeng ◽  
Xian Wu

As a new approach to passive noise control in low frequency domain, the targeted energy transfer (TET) technique has been applied to the 3D fields of acoustics. The nonlinear membrane absorber based on the TET can reduce the low frequency noise inside the 3D acoustic cavity. The TET phenomenon inside the 3D acoustic cavity has firstly investigated by a two degrees-of-freedom (DOF) system, which is comprised by an acoustic mode and a nonlinear membrane without the pre-stress. In order to control the low frequency broadband noise inside 3D acoustic cavity and consider the influence of the pre-stress for the TET, a general model of the system with several acoustic modes of 3D acoustic cavity and one nonlinear membrane is built and studied in this paper. By using the harmonic balance method and the numerical method, the nonlinear normal modes and the forced responses are analyzed. Meanwhile, the influence of the pre-stress of the nonlinear membrane for the TET is investigated. The desired working zones of the nonlinear membrane absorber for the broadband noise are investigated. It can be helpful to design the nonlinear membrane according the dimension of 3D acoustic cavity to control the low frequency broadband noise.


Sign in / Sign up

Export Citation Format

Share Document