scholarly journals Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets

2008 ◽  
Vol 106 (2) ◽  
pp. 588-592 ◽  
Author(s):  
T. Watanabe ◽  
S. Watanabe ◽  
K. Shinya ◽  
J. H. Kim ◽  
M. Hatta ◽  
...  
2006 ◽  
Vol 81 (3) ◽  
pp. 1339-1349 ◽  
Author(s):  
Tadasuke Naito ◽  
Fumitaka Momose ◽  
Atsushi Kawaguchi ◽  
Kyosuke Nagata

ABSTRACT Transcription and replication of the influenza virus RNA genome occur in the nuclei of infected cells through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. We previously identified a host factor designated RAF-1 (RNA polymerase activating factor 1) that stimulates viral RNA synthesis. RAF-1 is found to be identical to Hsp90. Here, we examined the intracellular localization of Hsp90 and viral RNA polymerase subunits and their molecular interaction. Hsp90 was found to interact with PB2 and PB1, and it was relocalized to the nucleus upon viral infection. We found that the nuclear transport of Hsp90 occurs in cells expressing PB2 alone. The nuclear transport of Hsp90 was in parallel with that of the viral RNA polymerase binary complexes, either PB1 and PB2 or PB1 and PA, as well as with that of PB2 alone. Hsp90 also interacted with the binary RNA polymerase complex PB1-PB2, and it was dissociated from the PB1-PB2 complex upon its association with PA. Furthermore, Hsp90 could form a stable PB1-PB2-Hsp90 complex prior to the formation of a ternary polymerase complex by the assembly of PA in the infected cells. These results suggest that Hsp90 is involved in the assembly and nuclear transport of viral RNA polymerase subunits, possibly as a molecular chaperone for the polymerase subunits prior to the formation of a mature ternary polymerase complex.


2021 ◽  
Author(s):  
Kyle Rosenke ◽  
Friederike Feldmann ◽  
Atsushi Okumura ◽  
Frederick Hansen ◽  
Tsing-Lee Tang-Huau ◽  
...  

The continuing emergence of SARS-CoV-2 variants calls for regular assessment to identify differences in viral replication, shedding and associated disease. In this study, African green monkeys were infected intranasally with either a contemporary D614G or the UK B.1.1.7 variant. Both variants caused mild respiratory disease with no significant differences in clinical presentation. Significantly higher levels of viral RNA and infectious virus were found in upper and lower respiratory tract samples and tissues from B.1.1.7 infected animals. Interestingly, D614G infected animals showed significantly higher levels of viral RNA and infectious virus in rectal swabs and gastrointestinal tract tissues. Our results indicate that B.1.1.7 infection in African green monkeys is associated with increased respiratory replication and shedding but no disease enhancement similar to human B.1.1.7 cases.


Cell Reports ◽  
2020 ◽  
Vol 33 (5) ◽  
pp. 108342
Author(s):  
Nina Sun ◽  
Chunfeng Li ◽  
Xiao-Feng Li ◽  
Yong-Qiang Deng ◽  
Tao Jiang ◽  
...  

2009 ◽  
Vol 90 (6) ◽  
pp. 1392-1397 ◽  
Author(s):  
Shohreh Mahmoudian ◽  
Sabrina Auerochs ◽  
Monika Gröne ◽  
Manfred Marschall

The virulence of influenza A viruses depends on the activity of the viral RNA polymerase complex and viral regulatory phosphoproteins. We identified that the protein kinase C (PKC) inhibitor Gö6976 had a post-entry anti-influenza viral effect, by using a polymerase activity-based reporter assay. This inhibitory effect was observed for influenza virus-infected cells as well as for cells transiently transfected with constructs for the RNA polymerase complex. Importantly, the in vitro analysis of viral protein phosphorylation identified PKCα as a kinase phosphorylating PB1 and NS1, but not PB2, PA or NP. Gö6976 was able to block PKC-specific phosphorylation in vitro. Thus, our data suggest that PKC contributes to the phosphorylation of influenza PB1 and NS1 proteins which appears to be functionally relevant for both viral RNA polymerase activity and efficient viral replication.


Sign in / Sign up

Export Citation Format

Share Document