scholarly journals Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase

2008 ◽  
Vol 105 (49) ◽  
pp. 19211-19216 ◽  
Author(s):  
Q. Sun ◽  
W. Fan ◽  
K. Chen ◽  
X. Ding ◽  
S. Chen ◽  
...  
2008 ◽  
Vol 19 (12) ◽  
pp. 5360-5372 ◽  
Author(s):  
Eisuke Itakura ◽  
Chieko Kishi ◽  
Kinji Inoue ◽  
Noboru Mizushima

Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.


2016 ◽  
Vol 113 (39) ◽  
pp. 10896-10901 ◽  
Author(s):  
Xiaojun Tan ◽  
Narendra Thapa ◽  
Yihan Liao ◽  
Suyong Choi ◽  
Richard A. Anderson

Autophagy is a regulated self-digestion pathway with fundamental roles in cell homeostasis and diseases. Autophagy is regulated by coordinated actions of a series of autophagy-related (ATG) proteins. The Barkor/ATG14(L)–VPS34 (a class III phosphatidylinositol 3-kinase) complex and its product phosphatidylinositol 3-phosphate [PtdIns(3)P] play key roles in autophagy initiation. ATG14 contains a C-terminal Barkor/ATG14(L) autophagosome-targeting sequence (BATS) domain that senses the curvature of PtdIns(3)P-containing membrane. The BATS domain also strongly binds PtdIns(4,5)P2, but the functional significance has been unclear. Here we show that ATG14 specifically interacts with type Iγ PIP kinase isoform 5 (PIPKIγi5), an enzyme that generates PtdIns(4,5)P2 in mammalian cells. Autophagosomes have associated PIPKIγi5 and PtdIns(4,5)P2 that are colocalized with late endosomes and the endoplasmic reticulum. PtdIns(4,5)P2 generation at these sites requires PIPKIγi5. Loss of PIPKIγi5 results in a loss of ATG14, UV irradiation resistance-associated gene, and Beclin 1 and a block of autophagy. PtdIns(4,5)P2 binding to the ATG14–BATS domain regulates ATG14 interaction with VPS34 and Beclin 1, and thus plays a key role in ATG14 complex assembly and autophagy initiation. This study identifies an unexpected role for PtdIns(4,5)P2 signaling in the regulation of ATG14 complex and autophagy.


2009 ◽  
Vol 11 (4) ◽  
pp. 468-476 ◽  
Author(s):  
Yun Zhong ◽  
Qing Jun Wang ◽  
Xianting Li ◽  
Ying Yan ◽  
Jonathan M. Backer ◽  
...  

2008 ◽  
Vol 19 (12) ◽  
pp. 5593-5603 ◽  
Author(s):  
Peter J. Wen ◽  
Shona L. Osborne ◽  
Isabel C. Morrow ◽  
Robert G. Parton ◽  
Jan Domin ◽  
...  

Phosphatidylinositol-3-phosphate [PtdIns(3)P] is a key player in early endosomal trafficking and is mainly produced by class III phosphatidylinositol 3-kinase (PI3K). In neurosecretory cells, class II PI3K-C2α and its lipid product PtdIns(3)P have recently been shown to play a critical role during neuroexocytosis, suggesting that two distinct pools of PtdIns(3)P might coexist in these cells. However, the precise characterization of this additional pool of PtdIns(3)P remains to be established. Using a selective PtdIns(3)P probe, we have identified a novel PtdIns(3)P-positive pool localized on secretory vesicles, sensitive to PI3K-C2α knockdown and relatively resistant to wortmannin treatment. In neurosecretory cells, stimulation of exocytosis promoted a transient albeit large increase in PtdIns(3)P production localized on secretory vesicles sensitive to PI3K-C2α knockdown and expression of PI3K-C2α catalytically inactive mutant. Using purified chromaffin granules, we found that PtdIns(3)P production is controlled by Ca2+. We confirmed that PtdIns(3)P production from recombinantly expressed PI3K-C2α is indeed regulated by Ca2+. We provide evidence that a dynamic pool of PtdIns(3)P synthesized by PI3K-C2α occurs on secretory vesicles in neurosecretory cells, demonstrating that the activity of a member of the PI3K family is regulated by Ca2+ in vitro and in living neurosecretory cells.


2011 ◽  
Vol 75 (5) ◽  
pp. 940-950 ◽  
Author(s):  
Myung Rae Park ◽  
Mukesh Kumar Gupta ◽  
Hye Ran Lee ◽  
Ziban Chandra Das ◽  
Sang Jun Uhm ◽  
...  

2016 ◽  
Vol 113 (29) ◽  
pp. 8224-8229 ◽  
Author(s):  
Lindsey N. Young ◽  
Kelvin Cho ◽  
Rosalie Lawrence ◽  
Roberto Zoncu ◽  
James H. Hurley

The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) is central to autophagy initiation. We previously reported the V-shaped architecture of the four-subunit version of PI3KC3-C1 consisting of VPS (vacuolar protein sorting) 34, VPS15, BECN1 (Beclin 1), and ATG (autophagy-related) 14. Here we show that a putative fifth subunit, nuclear receptor binding factor 2 (NRBF2), is a tightly bound component of the complex that profoundly affects its activity and architecture. NRBF2 enhances the lipid kinase activity of the catalytic subunit, VPS34, by roughly 10-fold. We used hydrogen–deuterium exchange coupled to mass spectrometry and negative-stain electron microscopy to map NRBF2 to the base of the V-shaped complex. NRBF2 interacts primarily with the N termini of ATG14 and BECN1. We show that NRBF2 is a homodimer and drives the dimerization of the larger PI3KC3-C1 complex, with implications for the higher-order organization of the preautophagosomal structure.


Sign in / Sign up

Export Citation Format

Share Document