scholarly journals Cation-induced kinetic heterogeneity of the intron–exon recognition in single group II introns

2015 ◽  
Vol 112 (11) ◽  
pp. 3403-3408 ◽  
Author(s):  
Danny Kowerko ◽  
Sebastian L. B. König ◽  
Miriam Skilandat ◽  
Daniela Kruschel ◽  
Mélodie C. A. S. Hadzic ◽  
...  

RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5′-exon–intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg2+ and Ca2+ on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M2+ concentrations strongly promote interstrand association. Moreover, the presence of M2+ leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M2+ concentrations. Using NMR, we locate specific Mg2+ binding pockets and quantify their affinity toward Mg2+. Mg2+ pulse experiments show that M2+ exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M2+ binding sites at near-physiological M2+ concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M2+ binding sites.

2018 ◽  
Vol 115 (3) ◽  
pp. 513-518 ◽  
Author(s):  
Iris Grossman-Haham ◽  
Gabriel Rosenblum ◽  
Trishool Namani ◽  
Hagen Hofmann

Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.


2008 ◽  
Vol 82 (5) ◽  
pp. 58006 ◽  
Author(s):  
A. Imparato ◽  
F. Sbrana ◽  
M. Vassalli

Biopolymers ◽  
2008 ◽  
Vol 89 (7) ◽  
pp. 565-577 ◽  
Author(s):  
James B. Munro ◽  
Andrea Vaiana ◽  
Kevin Y. Sanbonmatsu ◽  
Scott C. Blanchard

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 504 ◽  
Author(s):  
Hendrik Sielaff ◽  
Seiga Yanagisawa ◽  
Wayne D. Frasch ◽  
Wolfgang Junge ◽  
Michael Börsch

F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F1 domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)3δab2. Subunits c10 or (αβ)3 alone are rotationally symmetric. However, symmetry is broken by the b2 homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F1 domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)3 catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b2δ in F1 and with b2a in FO. We monitored the enzyme’s rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.


Biochemistry ◽  
2011 ◽  
Vol 50 (15) ◽  
pp. 3107-3115 ◽  
Author(s):  
Kirsten Dammertz ◽  
Martin Hengesbach ◽  
Mark Helm ◽  
G. Ulrich Nienhaus ◽  
Andrei Yu. Kobitski

Sign in / Sign up

Export Citation Format

Share Document