scholarly journals Giant reversible, facet-dependent, structural changes in a correlated-electron insulator induced by ionic liquid gating

2015 ◽  
Vol 112 (4) ◽  
pp. 1013-1018 ◽  
Author(s):  
Jaewoo Jeong ◽  
Nagaphani B. Aetukuri ◽  
Donata Passarello ◽  
Steven D. Conradson ◽  
Mahesh G. Samant ◽  
...  

The use of electric fields to alter the conductivity of correlated electron oxides is a powerful tool to probe their fundamental nature as well as for the possibility of developing novel electronic devices. Vanadium dioxide (VO2) is an archetypical correlated electron system that displays a temperature-controlled insulating to metal phase transition near room temperature. Recently, ionic liquid gating, which allows for very high electric fields, has been shown to induce a metallic state to low temperatures in the insulating phase of epitaxially grown thin films of VO2. Surprisingly, the entire film becomes electrically conducting. Here, we show, from in situ synchrotron X-ray diffraction and absorption experiments, that the whole film undergoes giant, structural changes on gating in which the lattice expands by up to ∼3% near room temperature, in contrast to the 10 times smaller (∼0.3%) contraction when the system is thermally metallized. Remarkably, these structural changes are fully reversible on reverse gating. Moreover, we find these structural changes and the concomitant metallization are highly dependent on the VO2 crystal facet, which we relate to the ease of electric-field–induced motion of oxygen ions along chains of edge-sharing VO6 octahedra that exist along the (rutile) c axis.

2005 ◽  
Vol 67 (1) ◽  
pp. 37-46 ◽  
Author(s):  
U. Pliquett ◽  
S. Gallo ◽  
S.W. Hui ◽  
Ch. Gusbeth ◽  
E. Neumann

2014 ◽  
Vol 28 (04) ◽  
pp. 1450027 ◽  
Author(s):  
A. CABO MONTES DE OCA ◽  
N. H. MARCH ◽  
A. CABO-BIZET

Former results for a tight-binding (TB) model of CuO planes in La 2 CuO 4 are reinterpreted here to underline their wider implications. It is noted that physical systems being appropriately described by the TB model can exhibit the main strongly correlated electron system (SCES) properties, when they are solved in the HF approximation, by also allowing crystal symmetry breaking effects and noncollinear spin orientations of the HF orbitals. It is argued how a simple 2D square lattice system of Coulomb interacting electrons can exhibit insulator gaps and pseudogap states, and quantum phase transitions as illustrated by the mentioned former works. A discussion is also presented here indicating the possibility of attaining room temperature superconductivity, by means of a surface coating with water molecules of cleaved planes of graphite, being orthogonal to its c-axis. The possibility that 2D arrays of quantum dots can give rise to the same effect is also proposed to consideration. The analysis also furnishes theoretical insight to solve the Mott–Slater debate, at least for the La 2 CuO 4 and TMO band structures. The idea is to apply a properly noncollinear GW scheme to the electronic structure calculation of these materials. The fact is that the GW approach can be viewed as a HF procedure in which the screening polarization is also determined. This directly indicates the possibility of predicting the assumed dielectric constant in the previous works. Thus, the results seem to identify that the main correlation properties in these materials are determined by screening. Finally, the conclusions also seem to be of help for the description of the experimental observations of metal-insulator transitions and Mott properties in atoms trapped in planar photonic lattices.


Author(s):  
J. J. Hren ◽  
S. D. Walck

The field ion microscope (FIM) has had the ability to routinely image the surface atoms of metals since Mueller perfected it in 1956. Since 1967, the TOF Atom Probe has had single atom sensitivity in conjunction with the FIM. “Why then hasn't the FIM enjoyed the success of the electron microscope?” The answer is closely related to the evolution of FIM/Atom Probe techniques and the available technology. This paper will review this evolution from Mueller's early discoveries, to the development of a viable commercial instrument. It will touch upon some important contributions of individuals and groups, but will not attempt to be all inclusive. Variations in instrumentation that define the class of problems for which the FIM/AP is uniquely suited and those for which it is not will be described. The influence of high electric fields inherent to the technique on the specimens studied will also be discussed. The specimen geometry as it relates to preparation, statistical sampling and compatibility with the TEM will be examined.


2017 ◽  
Author(s):  
Massimiliano Galluzzi ◽  
Simone Bovio ◽  
Paolo Milani ◽  
Alessandro Podestà

We report on the modification of the electric properties of the imidazolium-based [BMIM][NTf2] ionic liquid upon surface confinement in the sub-monolayer regime. Solid-like insulating nanostructures of [BMIM][NTf2] spontaneously form on a variety of insulating substrates, at odd with the liquid and conductive nature of the same substances in the bulk phase. A systematic spatially resolved investigation by atomic force microscopy of the morphological, mechanical and electrical properties of [BMIM][NTf2] nanostructures showed that this liquid substance rearranges into lamellar nanostructures with a high degree of vertical order and enhanced resistance to mechanical compressive stresses and very intense electric fields, denoting a solid-like character. The morphological and structural reorganization has a profound impact on the electric properties of supported [BMIM][NTf2] islands, which behave like insulator layers with a relative dielectric constant between 3 and 5, comparable to those of conventional ionic solids, and significantly smaller than those measured in the bulk ionic liquid. These results suggest that in the solid-like ordered domains confined either at surfaces or inside the pores of the nanoporous electrodes of photo-electrochemical devices, the ionic mobility and the overall electrical properties can be significantly perturbed with respect to the bulk liquid phase, which would likely influence the<br>performance of the devices.<br>


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Sign in / Sign up

Export Citation Format

Share Document