scholarly journals Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome

2015 ◽  
Vol 112 (46) ◽  
pp. 14343-14347 ◽  
Author(s):  
Mizue Anda ◽  
Yoshiyuki Ohtsubo ◽  
Takashi Okubo ◽  
Masayuki Sugawara ◽  
Yuji Nagata ◽  
...  

rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the “main” chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium,Aureimonassp. AU20, indicates that this strain has its solerrnoperon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying therrnoperon on the background of anrrn-lacking chromosome (RLC) as therrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genusAureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general.

Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 407-422 ◽  
Author(s):  
E A Vallen ◽  
W Ho ◽  
M Winey ◽  
M D Rose

Abstract KAR1 encodes an essential component of the yeast spindle pole body (SPB) that is required for karyogamy and SPB duplication. A temperature-sensitive mutation, kar1-delta 17, mapped to a region required for SPB duplication and for localization to the SPB. To identify interacting SPB proteins, we isolated 13 dominant mutations and 3 high copy number plasmids that suppressed the temperature sensitivity of kar1-delta 17. Eleven extragenic suppressor mutations mapped to two linkage groups, DSK1 and DSK2. The extragenic suppressors were specific for SPB duplication and did not suppress karyogamy-defective alleles. The major class, DSK1, consisted of mutations in CDC31. CDC31 is required for SPB duplication and encodes a calmodulin-like protein that is most closely related to caltractin/centrin, a protein associated with the Chlamydomonas basal body. The high copy number suppressor plasmids contained the wild-type CDC31 gene. One CDC31 suppressor allele conferred a temperature-sensitive defect in SPB duplication, which was counter-suppressed by recessive mutations in KAR1. In spite of the evidence for a direct interaction, the strongest CDC31 alleles, as well as both DSK2 alleles, suppressed a complete deletion of KAR1. However, the CDC31 alleles also made the cell supersensitive to KAR1 gene dosage, arguing against a simple bypass mechanism of suppression. We propose a model in which Kar1p helps localize Cdc31p to the SPB and that Cdc31p then initiates SPB duplication via interaction with a downstream effector.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 685-697 ◽  
Author(s):  
Edward K Kentner ◽  
Michael L Arnold ◽  
Susan R Wessler

Abstract The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is ∼1 × 105, accounting for ∼6–10% of the ∼10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F1 and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.


1988 ◽  
Vol 29 (6) ◽  
pp. 572-578 ◽  
Author(s):  
Steve P. Chambers ◽  
Sue E. Prior ◽  
Rachell A. Evans ◽  
Roger F. Sherwood ◽  
Nigel P. Minton

1974 ◽  
Vol 141 (3) ◽  
pp. 609-615 ◽  
Author(s):  
John Shine ◽  
Lynn Dalgarno

The 3′-terminal sequence of 18S ribosomal RNA from Drosophila melanogaster and Saccharomyces cerevisiae was determined by stepwise degradation from the 3′-terminus and labelling with [3H]isoniazid. The sequence G-A-U-C-A-U-U-AOH was found at the 3′-terminus of both 18S rRNA species. Less extensive data for 18S RNA from a number of other eukaryotes are consistent with the same 3′-terminal sequence, and an identical sequence has previously been reported for the 3′-end of rabbit reticulocyte 18S rRNA (Hunt, 1970). These results suggest that the base sequence in this region is strongly conserved and may be identical in all eukaryotes. As the 3′-terminal hexanucleotide is complementary to eukaryotic terminator codons we discuss the possibility that the 3′-end of 18S rRNA may have a direct base-pairing role in the termination of protein synthesis.


2015 ◽  
Vol 82 (4) ◽  
pp. 1286-1294 ◽  
Author(s):  
Evelyn Durmaz ◽  
Yan Hu ◽  
Raffi V. Aroian ◽  
Todd R. Klaenhammer

ABSTRACTTheBacillus thuringiensiscrystal (Cry) protein Cry5B (140 kDa) and a truncated version of the protein, tCry5B (79 kDa), are lethal to nematodes. Genes encoding the two proteins were separately cloned into a high-copy-number vector with a strong constitutive promoter (pTRK593) inLactococcus lactisfor potential oral delivery against parasitic nematode infections. Western blots using a Cry5B-specific antibody revealed that constitutively expressed Cry5B and tCry5B were present in both cells and supernatants. To increase production,cry5Bwas cloned into the high-copy-number plasmid pMSP3535H3, carrying a nisin-inducible promoter. Immunoblotting revealed that 3 h after nisin induction, intracellular Cry5B was strongly induced at 200 ng/ml nisin, without adversely affecting cell viability or cell membrane integrity. Both Cry5B genes were also cloned into plasmid pTRK1061, carrying a promoter and encoding a transcriptional activator that invoke low-level expression of prophage holin and lysin genes inLactococcuslysogens, resulting in a leaky phenotype. Cry5B and tCry5B were actively expressed in the lysogenic strainL. lactisKP1 and released into cell supernatants without affecting culture growth. Lactate dehydrogenase (LDH) assays indicated that Cry5B, but not LDH, leaked from the bacteria. Lastly, using intracellular lysates fromL. lactiscultures expressing both Cry5B and tCry5B,in vivochallenges ofCaenorhabditis elegansworms demonstrated that the Cry proteins were biologically active. Taken together, these results indicate that active Cry5B proteins can be expressed intracellularly in and released extracellularly fromL. lactis, showing potential for future use as an anthelminthic that could be delivered orally in a food-grade microbe.


2002 ◽  
Vol 23 (2) ◽  
pp. 288-292 ◽  
Author(s):  
Martı́n Garcı́a-Varela ◽  
Michael P Cummings ◽  
Gerardo Pérez-Ponce de León ◽  
Scott L Gardner ◽  
Juan P Laclette

Sign in / Sign up

Export Citation Format

Share Document