scholarly journals Advanced maritime adaptation in the western Pacific coastal region extends back to 35,000–30,000 years before present

2016 ◽  
Vol 113 (40) ◽  
pp. 11184-11189 ◽  
Author(s):  
Masaki Fujita ◽  
Shinji Yamasaki ◽  
Chiaki Katagiri ◽  
Itsuro Oshiro ◽  
Katsuhiro Sano ◽  
...  

Maritime adaptation was one of the essential factors that enabled modern humans to disperse all over the world. However, geographic distribution of early maritime technology during the Late Pleistocene remains unclear. At this time, the Indonesian Archipelago and eastern New Guinea stand as the sole, well-recognized area for secure Pleistocene evidence of repeated ocean crossings and advanced fishing technology. The incomplete archeological records also make it difficult to know whether modern humans could sustain their life on a resource-poor, small oceanic island for extended periods with Paleolithic technology. We here report evidence from a limestone cave site on Okinawa Island, Japan, of successive occupation that extends back to 35,000−30,000 y ago. Well-stratified strata at the Sakitari Cave site yielded a rich assemblage of seashell artifacts, including formally shaped tools, beads, and the world’s oldest fishhooks. These are accompanied by seasonally exploited food residue. The persistent occupation on this relatively small, geographically isolated island, as well as the appearance of Paleolithic sites on nearby islands by 30,000 y ago, suggest wider distribution of successful maritime adaptations than previously recognized, spanning the lower to midlatitude areas in the western Pacific coastal region.

2017 ◽  
Vol 17 (17) ◽  
pp. 10837-10854 ◽  
Author(s):  
Cathleen Schlundt ◽  
Susann Tegtmeier ◽  
Sinikka T. Lennartz ◽  
Astrid Bracher ◽  
Wee Cheah ◽  
...  

Abstract. A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu seas. Humic- and protein-like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.


2017 ◽  
Author(s):  
Cathleen Schlundt ◽  
Christa A. Marandino ◽  
Susann Tegtmeier ◽  
Sinikka T. Lennartz ◽  
Astrid Bracher ◽  
...  

Abstract. A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs indicating that phytoplankton may be an important source for marine OVOCs in the South China and Sulu Seas. Humic and protein like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The atmospheric OVOC mixing ratios were relative high compared with literature values, suggesting the coastal region of North Borneo as a local hot spot for atmospheric OVOCs. The flux of atmospheric OVOCs was largely into the ocean for all 5 gases, with a few important exceptions near the coast of Borneo. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the local measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.


2021 ◽  
Vol 14 (2) ◽  

Homalopsid snakes are monophyletic and contain two major subclades: a fangless clade and rear-fanged clade. They are distributed in South Asia, Australasia, and the Western Pacific. The fangless clade is restricted to the eastern Indonesian Archipelago and the island of Sumatra and is poorly known in terms of its natural history. Molecular data support the eastern Indonesian fangless endemic genus Brachyorrhos as the sister to the rear-fang clade. Here we recognize the identity of the Brachyorrhos population from the island of Morotai as B. wallacei and describe a new species of dwarf Brachyorrhos from the island of Seram, Malukus, Indonesia. The new species can be distinguished from all congeners by a lower number of ventral scales, the presence of a preocular scale and a loreal scale, as well as its exceptionally diminutive size. The new species is a candidate for the smallest alethinophidian snake. The three fangless genera, Brachyorrhos, Calamophis, and Karnsophis, have been suggested to form a clade of homalopsid snakes restricted to the Indonesian Archipelago, and we discuss their biogeography. KEYWORDS: biogeography, Calamophis, Homalopsidae, Karnsophis, small snakes


1993 ◽  
Author(s):  
Dennis C. Perryman ◽  
Richard E. Gilmore ◽  
Ronald E. Englebretson

Sign in / Sign up

Export Citation Format

Share Document