scholarly journals Evolution of nonspectral rhodopsin function at high altitudes

2017 ◽  
Vol 114 (28) ◽  
pp. 7385-7390 ◽  
Author(s):  
Gianni M. Castiglione ◽  
Frances E. Hauser ◽  
Brian S. Liao ◽  
Nathan K. Lujan ◽  
Alexander Van Nynatten ◽  
...  

High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates—properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.

2018 ◽  
Vol 5 (6) ◽  
pp. 172174 ◽  
Author(s):  
Stephanie Payne ◽  
Rajendra Kumar BC ◽  
Emma Pomeroy ◽  
Alison Macintosh ◽  
Jay Stock

The multi-stress environment of high altitude has been associated with growth deficits in humans, particularly in zeugopod elements (forearm and lower leg). This is consistent with the thrifty phenotype hypothesis, which has been observed in Andeans, but has yet to be tested in other high-altitude populations. In Himalayan populations, other factors, such as cold stress, may shape limb proportions. The current study investigated whether relative upper limb proportions of Himalayan adults ( n  = 254) differ between highland and lowland populations, and whether cold adaptation or a thrifty phenotype mechanism may be acting here. Height, weight, humerus length, ulna length, hand length and hand width were measured using standard methods. Relative to height, total upper limb and ulna lengths were significantly shorter in highlanders compared with lowlanders in both sexes, while hand and humerus length were not. Hand width did not significantly differ between populations. These results support the thrifty phenotype hypothesis, as hand and humerus proportions are conserved at the expense of the ulna. The reduction in relative ulna length could be attributed to cold adaptation, but the lack of difference between populations in both hand length and width indicates that cold adaptation is not shaping hand proportions in this case.


10.1002/jcc.2 ◽  
1996 ◽  
Vol 17 (16) ◽  
pp. 1804-1819 ◽  
Author(s):  
Attila Kov�cs ◽  
Istv�n Kolossv�ry ◽  
G�bor I. Csonka ◽  
Istv�n Hargittai

Author(s):  
Dean Jacobsen ◽  
Olivier Dangles

Chapter 5 is focused on how organisms cope with the environmental conditions that are a direct result of high altitude. Organisms reveal a number of fascinating ways of dealing with a life at high altitude; for example, avoidance and pigmentation as protection against damaging high levels of ultraviolet radiation, accumulation of antifreeze proteins, and metabolic cold adaptation among species encountering low temperatures with the risk of freezing, oxy-regulatory capacity in animals due to low availability of oxygen, and root uptake from the sediment of inorganic carbon by plants living in waters poor in dissolved carbon dioxide. These and more adaptations are carefully described through a number of examples from famous flagship species in addition to the less well-known ones. Harsh environmental conditions work as an environmental filter that only allows the well-adapted species to slip through to colonize high altitude waters.


2019 ◽  
Vol 58 (14) ◽  
pp. 9443-9451 ◽  
Author(s):  
Song Xu ◽  
Hyuk-Yong Kwon ◽  
Daniel C. Ashley ◽  
Chun-Hsing Chen ◽  
Elena Jakubikova ◽  
...  

2012 ◽  
Vol 2012 (24) ◽  
pp. 4483-4492 ◽  
Author(s):  
Ronald K. Castellano ◽  
Yan Li ◽  
Edwin A. Homan ◽  
Andrew J. Lampkins ◽  
Iris V. Marín ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3763
Author(s):  
Poul Erik Hansen

This review outlines methods to investigate the structure of natural products with emphasis on intramolecular hydrogen bonding, tautomerism and ionic structures using NMR techniques. The focus is on 1H chemical shifts, isotope effects on chemical shifts and diffusion ordered spectroscopy. In addition, density functional theory calculations are performed to support NMR results. The review demonstrates how hydrogen bonding may lead to specific structures and how chemical equilibria, as well as tautomeric equilibria and ionic structures, can be detected. All these features are important for biological activity and a prerequisite for correct docking experiments and future use as drugs.


Sign in / Sign up

Export Citation Format

Share Document