scholarly journals Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality

2017 ◽  
Vol 114 (34) ◽  
pp. 9164-9169 ◽  
Author(s):  
Noriko Takahashi ◽  
Charley C. Gruber ◽  
Jason H. Yang ◽  
Xiaobo Liu ◽  
Dana Braff ◽  
...  

Downstream metabolic events can contribute to the lethality of drugs or agents that interact with a primary cellular target. In bacteria, the production of reactive oxygen species (ROS) has been associated with the lethal effects of a variety of stresses including bactericidal antibiotics, but the relative contribution of this oxidative component to cell death depends on a variety of factors. Experimental evidence has suggested that unresolvable DNA problems caused by incorporation of oxidized nucleotides into nascent DNA followed by incomplete base excision repair contribute to the ROS-dependent component of antibiotic lethality. Expression of the chimeric periplasmic-cytoplasmic MalE-LacZ72–47protein is an historically important lethal stress originally identified during seminal genetic experiments that defined the SecY-dependent protein translocation system. Multiple, independent lines of evidence presented here indicate that the predominant mechanism for MalE-LacZ lethality shares attributes with the ROS-dependent component of antibiotic lethality. MalE-LacZ lethality requires molecular oxygen, and its expression induces ROS production. The increased susceptibility of mutants sensitive to oxidative stress to MalE-LacZ lethality indicates that ROS contribute causally to cell death rather than simply being produced by dying cells. Observations that support the proposed mechanism of cell death include MalE-LacZ expression being bacteriostatic rather than bactericidal in cells that overexpress MutT, a nucleotide sanitizer that hydrolyzes 8-oxo-dGTP to the monophosphate, or that lack MutM and MutY, DNA glycosylases that process base pairs involving 8-oxo-dGTP. Our studies suggest stress-induced physiological changes that favor this mode of ROS-dependent death.

2021 ◽  
Vol 22 (3) ◽  
pp. 1137
Author(s):  
Annalisa Ferino ◽  
Luigi E. Xodo

The promoter of the Kirsten ras (KRAS) proto-oncogene contains, upstream of the transcription start site, a quadruplex-forming motif called 32R with regulatory functions. As guanine under oxidative stress can be oxidized to 8-oxoguanine (8OG), we investigated the capacity of glycosylases 8-oxoguanine glycosylase (OGG1) and endonuclease VIII-like 1 (Neil1) to excise 8OG from 32R, either in duplex or G-quadruplex (G4) conformation. We found that OGG1 efficiently excised 8OG from oxidized 32R in duplex but not in G4 conformation. By contrast, glycosylase Neil1 showed more activity on the G4 than the duplex conformation. We also found that the excising activity of Neil1 on folded 32R depended on G4 topology. Our data suggest that Neil1, besides being involved in base excision repair pathway (BER), could play a role on KRAS transcription.


2005 ◽  
Vol 65 (14) ◽  
pp. 6394-6400 ◽  
Author(s):  
Ram N. Trivedi ◽  
Karen H. Almeida ◽  
Jamie L. Fornsaglio ◽  
Sandra Schamus ◽  
Robert W. Sobol

2021 ◽  
Vol 12 ◽  
Author(s):  
Almaz Nigatu Tesfahun ◽  
Marina Alexeeva ◽  
Miglė Tomkuvienė ◽  
Aysha Arshad ◽  
Prashanna Guragain ◽  
...  

DNA polymerase III mis-insertion may, where not corrected by its 3′→ 5′ exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in Escherichia coli, and its repair mechanism remains elusive. We present here in vitro evidence that C⋅C mismatch can be processed by base excision repair initiated by the E. coli formamidopyrimidine-DNA glycosylase (Fpg) protein. The kcat for C⋅C is, however, 2.5 to 10 times lower than for its primary substrate 8-oxoguanine (oxo8G)⋅C, but approaches those for 5,6-dihydrothymine (dHT)⋅C and thymine glycol (Tg)⋅C. The KM values are all in the same range, which indicates efficient recognition of C⋅C mismatches in DNA. Fpg activity was also exhibited for the thymine (T)⋅T mismatch and for N4- and/or 5-methylated C opposite C or T, Fpg activity being enabled on a broad spectrum of DNA lesions and mismatches by the flexibility of the active site loop. We hypothesize that Fpg plays a role in resolving C⋅C in particular, but also other pyrimidine⋅pyrimidine mismatches, which increases survival at the cost of some mutagenesis.


DNA Research ◽  
2019 ◽  
Vol 26 (4) ◽  
pp. 341-352
Author(s):  
Michal Růžička ◽  
Přemysl Souček ◽  
Petr Kulhánek ◽  
Lenka Radová ◽  
Lenka Fajkusová ◽  
...  

Abstract Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.


1986 ◽  
Vol 235 (2) ◽  
pp. 531-536 ◽  
Author(s):  
M Dizdaroglu ◽  
E Holwitt ◽  
M P Hagan ◽  
W F Blakely

OsO4 selectively forms thymine glycol lesions in DNA. In the past, OsO4-treated DNA has been used as a substrate in studies of DNA repair utilizing base-excision repair enzymes such as DNA glycosylases. There is, however, no information available on the chemical identity of other OsO4-induced base lesions in DNA. A complete knowledge of such DNA lesions may be of importance for repair studies. Using a methodology developed recently for characterization of oxidative base damage in DNA, we provide evidence for the formation of cytosine glycol and 5,6-dihydroxycytosine moieties, in addition to thymine glycol, in DNA on treatment with OsO4. For this purpose, samples of OsO4-treated DNA were hydrolysed with formic acid, then trimethylsilylated and analysed by capillary gas chromatography-mass spectrometry. In addition to thymine glycol, 5-hydroxyuracil (isobarbituric acid), 5-hydroxycytosine and 5,6-dihydroxyuracil (isodialuric acid or dialuric acid) were identified in OsO4-treated DNA. It is suggested that 5-hydroxyuracil was formed by formic acid-induced deamination and dehydration of cytosine glycol, which was the actual oxidation product of the cytosine moiety in DNA. 5-Hydroxycytosine obviously resulted from dehydration of cytosine glycol, and 5,6-dihydroxyuracil from deamination of 5,6-dihydroxycytosine. This scheme was supported by the presence of 5-hydroxyuracil, uracil glycol and 5,6-dihydroxyuracil in OsO4-treated cytosine. Treatment of OsO4-treated cytosine with formic acid caused the complete conversion of uracil glycol into 5-hydroxyuracil. The implications of these findings relative to studies of DNA repair are discussed.


DNA Repair ◽  
2004 ◽  
Vol 3 (6) ◽  
pp. 617-627 ◽  
Author(s):  
G.E Kisby ◽  
H Lesselroth ◽  
A Olivas ◽  
L Samson ◽  
B Gold ◽  
...  

2000 ◽  
Vol 20 (10) ◽  
pp. 3522-3528 ◽  
Author(s):  
Carlos A. Torres-Ramos ◽  
Robert E. Johnson ◽  
Louise Prakash ◽  
Satya Prakash

ABSTRACT In eukaryotes, DNA damage induced by ultraviolet light and other agents which distort the helix is removed by nucleotide excision repair (NER) in a fragment ∼25 to 30 nucleotides long. In humans, a deficiency in NER causes xeroderma pigmentosum (XP), characterized by extreme sensitivity to sunlight and a high incidence of skin cancers. Abasic (AP) sites are formed in DNA as a result of spontaneous base loss and from the action of DNA glycosylases involved in base excision repair. In Saccharomyces cerevisiae, AP sites are removed via the action of two class II AP endonucleases, Apn1 and Apn2. Here, we provide evidence for the involvement of NER in the removal of AP sites and show that NER competes with Apn1 and Apn2 in this repair process. Inactivation of NER in the apn1Δ orapn1Δ apn2Δ strain enhances sensitivity to the monofunctional alkylating agent methyl methanesulfonate and leads to further impairment in the cellular ability to remove AP sites. A deficiency in the repair of AP sites may contribute to the internal cancers and progressive neurodegeneration that occur in XP patients.


DNA Repair ◽  
2005 ◽  
Vol 4 (7) ◽  
pp. 826-835 ◽  
Author(s):  
Anna Campalans ◽  
Stéphanie Marsin ◽  
Yusaku Nakabeppu ◽  
Timothy R. O’Connor ◽  
Serge Boiteux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document