scholarly journals Correction for Pereira et al., Dorsolateral prefrontal cortex GABA deficit in older adults with sleep-disordered breathing

2017 ◽  
Vol 114 (44) ◽  
pp. E9424-E9424 ◽  
2017 ◽  
Vol 114 (38) ◽  
pp. 10250-10255 ◽  
Author(s):  
Ana C. Pereira ◽  
Xiangling Mao ◽  
Caroline S. Jiang ◽  
Guoxin Kang ◽  
Sara Milrad ◽  
...  

Sleep-disordered breathing (SDB) is a common disorder in aging that is associated with cognitive decline, including significant executive dysfunction, for which the neurobiological underpinnings remain poorly understood. Using proton magnetic resonance spectroscopy (1H MRS), this study assessed whether dysregulation of the homeostatic balance of the major inhibitory and excitatory amino acid neurotransmitter systems of γ-aminobutyric acid (GABA) and glutamate, respectively, play a role in SDB. Levels of GABA and those of the combined resonances of glutamate and glutamine (Glx), were measured by 1H MRS in the left dorsolateral prefrontal cortex (l-DLPFC) and bilateral hippocampal regions of 19 older adults (age ± SD: 66.1 ± 1.9 years) with moderate to severe SDB, defined as having an Apnea–Hypopnea Index (AHI) greater than 15 as assessed by polysomnography, and in 14 older adults (age ± SD: 62.3 ± 1.3 years) without SDB (AHI < 5). In subjects with SDB, levels of l-DLPFC GABA, but not Glx, were significantly lower than in control subjects (P< 0.0002). Additionally, there was a negative correlation between l-DLPFC GABA levels, but not Glx, and SDB severity by AHI (r= -0.68,P< 0.0001), and a positive correlation between l-DLPFC GABA levels, but not Glx, and minimal oxygen saturation during sleep (r= 0.62,P= 0.0005). By contrast, no group differences or oxygenation associations were found for levels of GABA or Glx in right or left hippocampal region. These findings are interpreted in terms of a pathophysiological model of SDB in which hypoxia-mediated inhibitory neurotransmission deficit in DLPFC could lead to hyperexcitability and, potentially neuronal dysfunction and cognitive decline.


2018 ◽  
Vol 32 (9) ◽  
pp. 788-798 ◽  
Author(s):  
Brad Manor ◽  
Junhong Zhou ◽  
Rachel Harrison ◽  
On-Yee Lo ◽  
Thomas G. Travison ◽  
...  

Objective. To determine the effects of a transcranial direct current stimulation (tDCS) intervention with the anode placed over the left dorsolateral prefrontal cortex (dlPFC) and cathode over the right supraorbital region, on cognition, mobility, and “dual-task” standing and walking in older adults with mild-to-moderate motor and cognitive impairments. Methods. A double-blinded, block-randomized, sham-controlled trial was conducted in 18 nondemented, ambulatory adults aged ⩾65 years with slow walking speed (⩽1.0 m/s) and “executive” dysfunction (Trail Making Test B score ⩽25th percentile of age- and education-matched norms). Interventions included ten 20-minute sessions of tDCS or sham stimulation. Cognition, mobility, and dual-task standing and walking were assessed at baseline, postintervention, and 2 weeks thereafter. Dual tasking was also assessed immediately before and after the first tDCS session. Results. Intervention compliance was high (mean ± SD = 9.5 ± 1.1 sessions) and no unexpected or serious side effects were reported. tDCS, compared with sham, induced improvements in the Montreal Cognitive Assessment total score ( P = .03) and specifically within the executive function subscore of this test ( P = .002), and in several metrics of dual-task standing and walking ( P < .05). Each of these effects persisted for 2 weeks. tDCS had no effect on the Timed Up-and-Go test of mobility or the Geriatric Depression Scale. Those participants who exhibited larger improvements in dual-task standing posture following the first tDCS session exhibited larger cognitive-motor improvements following 2 weeks of tDCS ( P < .04). Interpretation. tDCS intervention designed to stimulate the left dorsolateral prefrontal cortex may improve executive function and dual tasking in older adults with functional limitations.


2022 ◽  
Vol 15 ◽  
Author(s):  
Yee Xing You ◽  
Suzana Shahar ◽  
Mazlyfarina Mohamad ◽  
Nor Fadilah Rajab ◽  
Normah Che Din ◽  
...  

Working memory is developed in one region of the brain called the dorsolateral prefrontal cortex (DLPFC). The dysfunction of this region leads to synaptic neuroplasticity impairment. It has been reported that several biochemical parameters and anthropometric measurements play a vital role in cognition and brain health. This study aimed to investigate the relationships between cognitive function, serum biochemical profile, and anthropometric measurements using DLPFC activation. A cross-sectional study was conducted among 35 older adults (≥60 years) who experienced mild cognitive impairment (MCI). For this purpose, we distributed a comprehensive interview-based questionnaire for collecting sociodemographic information from the participants and conducting cognitive tests. Anthropometric values were measured, and fasting blood specimens were collected. We investigated their brain activation using the task-based functional MRI (fMRI; N-back), specifically in the DLPFC region. Positive relationships were observed between brain-derived neurotrophic factor (BDNF) (β = 0.494, p &lt; 0.01) and Mini-Mental State Examination (MMSE) (β = 0.698, p &lt; 0.01); however, negative relationships were observed between serum triglyceride (β = −0.402, p &lt; 0.05) and serum malondialdehyde (MDA) (β = −0.326, p &lt; 0.05) with right DLPFC activation (R2 = 0.512) while the participants performed 1-back task after adjustments for age, gender, and years of education. In conclusion, higher serum triglycerides, higher oxidative stress, and lower neurotrophic factor were associated with lower right DLPFC activation among older adults with MCI. A further investigation needs to be carried out to understand the causal-effect mechanisms of the significant parameters and the DLPFC activation so that better intervention strategies can be developed for reducing the risk of irreversible neurodegenerative diseases among older adults with MCI.


Sign in / Sign up

Export Citation Format

Share Document