scholarly journals Transfer RNA genes experience exceptionally elevated mutation rates

2018 ◽  
Vol 115 (36) ◽  
pp. 8996-9001 ◽  
Author(s):  
Bryan P. Thornlow ◽  
Josh Hough ◽  
Jacquelyn M. Roger ◽  
Henry Gong ◽  
Todd M. Lowe ◽  
...  

Transfer RNAs (tRNAs) are a central component for the biological synthesis of proteins, and they are among the most highly conserved and frequently transcribed genes in all living things. Despite their clear significance for fundamental cellular processes, the forces governing tRNA evolution are poorly understood. We present evidence that transcription-associated mutagenesis and strong purifying selection are key determinants of patterns of sequence variation within and surrounding tRNA genes in humans and diverse model organisms. Remarkably, the mutation rate at broadly expressed cytosolic tRNA loci is likely between 7 and 10 times greater than the nuclear genome average. Furthermore, evolutionary analyses provide strong evidence that tRNA genes, but not their flanking sequences, experience strong purifying selection acting against this elevated mutation rate. We also find a strong correlation between tRNA expression levels and the mutation rates in their immediate flanking regions, suggesting a simple method for estimating individual tRNA gene activity. Collectively, this study illuminates the extreme competing forces in tRNA gene evolution and indicates that mutations at tRNA loci contribute disproportionately to mutational load and have unexplored fitness consequences in human populations.

2017 ◽  
Author(s):  
Bryan P. Thornlow ◽  
Josh Hough ◽  
Jacquelyn M. Roger ◽  
Henry Gong ◽  
Todd M. Lowe ◽  
...  

AbstractTransfer RNAs (tRNAs) are a central component for the biological synthesis of proteins, and they are among the most highly conserved and frequently transcribed genes in all living things. Despite their clear significance for fundamental cellular processes, the forces governing tRNA evolution are poorly understood. We present evidence that transcription-associated mutagenesis and strong purifying selection are key determinants of patterns of sequence variation within and surrounding tRNA genes in humans and diverse model organisms. Remarkably, the mutation rate at broadly expressed cytosolic tRNA loci is likely between seven and ten times greater than the nuclear genome average. Furthermore, evolutionary analyses provide strong evidence that tRNA genes, but not their flanking sequences, experience strong purifying selection, acting against this elevated mutation rate. We also find a strong correlation between tRNA expression levels and the mutation rates in their immediate flanking regions, suggesting a simple new method for estimating individual tRNA gene activity. Collectively, this study illuminates the extreme competing forces in tRNA gene evolution, and implies that mutations at tRNA loci contribute disproportionately to mutational load and have unexplored fitness consequences in human populations.Significance StatementWhile transcription-associated mutagenesis (TAM) has been demonstrated for protein coding genes, its implications in shaping genome structure at transfer RNA (tRNA) loci in metazoans have not been fully appreciated. We show that cytosolic tRNAs are a striking example of TAM because of their variable rates of transcription, well-defined boundaries and internal promoter sequences. tRNA loci have a mutation rate approximately seven-to tenfold greater than the genome-wide average, and these mutations are consistent with signatures of TAM. These observations indicate that tRNA loci are disproportionately large contributors to mutational load in the human genome. Furthermore, the correlations between tRNA locus variation and transcription implicate that prediction of tRNA gene expression based on sequence variation data is possible.


2019 ◽  
Vol 11 (7) ◽  
pp. 1829-1837 ◽  
Author(s):  
Marc Krasovec ◽  
Sophie Sanchez-Brosseau ◽  
Gwenael Piganeau

Abstract Mutations are the origin of genetic diversity, and the mutation rate is a fundamental parameter to understand all aspects of molecular evolution. The combination of mutation–accumulation experiments and high-throughput sequencing enabled the estimation of mutation rates in most model organisms, but several major eukaryotic lineages remain unexplored. Here, we report the first estimation of the spontaneous mutation rate in a model unicellular eukaryote from the Stramenopile kingdom, the diatom Phaeodactylum tricornutum (strain RCC2967). We sequenced 36 mutation accumulation lines for an average of 181 generations per line and identified 156 de novo mutations. The base substitution mutation rate per site per generation is μbs = 4.77 × 10−10 and the insertion–deletion mutation rate is μid = 1.58 × 10−11. The mutation rate varies as a function of the nucleotide context and is biased toward an excess of mutations from GC to AT, consistent with previous observations in other species. Interestingly, the mutation rates between the genomes of organelles and the nucleus differ, with a significantly higher mutation rate in the mitochondria. This confirms previous claims based on indirect estimations of the mutation rate in mitochondria of photosynthetic eukaryotes that acquired their plastid through a secondary endosymbiosis. This novel estimate enables us to infer the effective population size of P. tricornutum to be Ne∼8.72 × 106.


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 49 ◽  
Author(s):  
Renata Capellão ◽  
Elisa Costa-Paiva ◽  
Carlos Schrago

Studies that measured mutation rates in human populations using pedigrees have reported values that differ significantly from rates estimated from the phylogenetic comparison of humans and chimpanzees. Consequently, exchanges between mutation rate values across different timescales lead to conflicting divergence time estimates. It has been argued that this variation of mutation rate estimates across hominoid evolution is in part caused by incorrect assignment of calibration information to the mean coalescent time among loci, instead of the true genetic isolation (speciation) time between humans and chimpanzees. In this study, we investigated the feasibility of estimating the human pedigree mutation rate using phylogenetic data from the genomes of great apes. We found that, when calibration information was correctly assigned to the human–chimpanzee speciation time (and not to the coalescent time), estimates of phylogenetic mutation rates were statistically equivalent to the estimates previously reported using studies of human pedigrees. We conclude that, within the range of biologically realistic ancestral generation times, part of the difference between whole-genome phylogenetic and pedigree mutation rates is due to inappropriate assignment of fossil calibration information to the mean coalescent time instead of the speciation time. Although our results focus on the human–chimpanzee divergence, our findings are general, and relevant to the inference of the timescale of the tree of life.


2021 ◽  
Vol 13 (4) ◽  
Author(s):  
Jente Ottenburghs ◽  
Keyi Geng ◽  
Alexander Suh ◽  
Claudia Kutter

Abstract As a highly diverse vertebrate class, bird species have adapted to various ecological systems. How this phenotypic diversity can be explained genetically is intensively debated and is likely grounded in differences in the genome content. Larger and more complex genomes could allow for greater genetic regulation that results in more phenotypic variety. Surprisingly, avian genomes are much smaller compared to other vertebrates but contain as many protein-coding genes as other vertebrates. This supports the notion that the phenotypic diversity is largely determined by selection on non-coding gene sequences. Transfer RNAs (tRNAs) represent a group of non-coding genes. However, the characteristics of tRNA genes across bird genomes have remained largely unexplored. Here, we exhaustively investigated the evolution and functional consequences of these crucial translational regulators within bird species and across vertebrates. Our dense sampling of 55 avian genomes representing each bird order revealed an average of 169 tRNA genes with at least 31% being actively used. Unlike other vertebrates, avian tRNA genes are reduced in number and complexity but are still in line with vertebrate wobble pairing strategies and mutation-driven codon usage. Our detailed phylogenetic analyses further uncovered that new tRNA genes can emerge through multiplication by transposable elements. Together, this study provides the first comprehensive avian and cross-vertebrate tRNA gene analyses and demonstrates that tRNA gene evolution is flexible albeit constrained within functional boundaries of general mechanisms in protein translation.


2021 ◽  
Author(s):  
William R. Milligan ◽  
Guy Amster ◽  
Guy Sella

AbstractMutation rates and spectra differ among human populations. Here, we examine whether this variation could be explained by evolution at mutation modifiers. To this end, we consider genetic modifier sites at which mutations, “mutator alleles”, increase genome-wide mutation rates and model their evolution under purifying selection due to the additional deleterious mutations that they cause, genetic drift, and demographic processes. We solve the model analytically for a constant population size and characterize how evolution at modifier sites impacts variation in mutation rates within and among populations. We then use simulations to study the effects of modifier sites under a plausible demographic model for Africans and Europeans. When comparing populations that evolve independently, weakly selected modifier sites (2Nes ≈ 1), which evolve slowly, contribute the most to variation in mutation rates. In contrast, when populations recently split from a common ancestral population, strongly selected modifier sites (2Nes ≫ 1), which evolve rapidly, contribute the most to variation between them. Moreover, a modest number of modifier sites (e.g., 10 per mutation type in the standard classification into 96 types) subject to moderate to strong selection (2Nes > 1) could account for the variation in mutation rates observed among human populations. If such modifier sites indeed underlie differences among populations, they should also cause variation in mutation rates within populations and their effects should be detectable in pedigree studies.


2020 ◽  
Author(s):  
William Amos

AbstractIt is widely accepted that non-African humans carry 1-2% Neanderthal DNA due to historical inter-breeding. However, inferences about introgression rely on a critical assumption that mutation rate is constant and that back-mutations are too rare to be important. Both these assumptions have been challenged, and recent evidence points towards an alternative model where signals interpreted as introgression are driven mainly by higher mutation rates in Africa. In this model, non-Africans appear closer to archaics not because they harbour introgressed fragments but because Africans have diverged more. Here I test this idea by using the density of rare, human-specific variants (RHSVs) as a proxy for recent mutation rate. I find that sites that contribute most to the signal interpreted as introgression tend to occur in tightly defined regions spanning only a few hundred bases in which mutation rate differs greatly between the two human populations being compared. Mutation rate is invariably higher in the population into which introgression is not inferred. I confirmed that RHSV density reflects mutation rate by conducting a parallel analysis looking at the density of RHSVs around sites with three alleles, an independent class of site that also requires recurrent mutations to form. Near-identical peaks in RHSV density are found, suggesting a common cause. Similarly, coalescent simulations confirm that, with constant mutation rate, introgressed fragments do not occur preferentially in regions with a high density of rare, human-specific variants. Together, these observations are difficult to reconcile with a model where excess base-sharing is driven by archaic legacies but instead provide support for a higher mutation rate inside Africa driving increased divergence from the ancestral human state.


1982 ◽  
Vol 60 (4) ◽  
pp. 475-479 ◽  
Author(s):  
R. J. Cedergren

Extensive sequence data on mitochondrial (mt) tRNAs give for the first time an opportunity to evaluate tRNA gene evolution in this organelle. Deductions from these gene structures relate to the evolution of tRNA genes in other cellular systems and to the origin of the genetic code. Mt tRNAs, in contrast to the prokaryotic nature of chloroplastic tRNA structure, can not at the present time be definitely related to either prokaryotic or eukaryotic tRNAs, probably because of a higher mutation rate in mitochondria.Fungal mt tRNAs having the same anticodon and function are generally similar enough to be considered homologous. Comparisons of all mt tRNA sequences contained in the same mitochondrion indicate that some tRNAs originated by duplication of a prototypic gene which, after divergence, led to tRNAs having different amino acid specificities. The deviant mt genetic code, although admittedly permitting a simpler decoding mechanism, is not useful in determining whether the origin of mitochondria had preceded or was derived from prokaryotes or eukaryotes, since the genetic code is variable even among mitochondria. Variants of the mt genetic code lead to speculation on the nature of die primordial code and its relation to the present "universal" code.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wen-Ge Dong ◽  
Yalun Dong ◽  
Xian-Guo Guo ◽  
Renfu Shao

Abstract Background The typical single-chromosome mitochondrial (mt) genome of animals has fragmented into multiple minichromosomes in the lineage Mitodivisia, which contains most of the parasitic lice of eutherian mammals. These parasitic lice differ from each other even among congeneric species in mt karyotype, i.e. the number of minichromosomes, and the gene content and gene order in each minichromosome, which is in stark contrast to the extremely conserved single-chromosome mt genomes across most animal lineages. How fragmented mt genomes evolved is still poorly understood. We use Polyplax sucking lice as a model to investigate how tRNA gene translocation shapes the dynamic mt karyotypes. Results We sequenced the full mt genome of the Asian grey shrew louse, Polyplax reclinata. We then inferred the ancestral mt karyotype for Polyplax lice and compared it with the mt karyotypes of the three Polyplax species sequenced to date. We found that tRNA genes were entirely responsible for mt karyotype variation among these three species of Polyplax lice. Furthermore, tRNA gene translocation observed in Polyplax lice was only between different types of minichromosomes and towards the boundaries with the control region. A similar pattern of tRNA gene translocation can also been seen in other sucking lice with fragmented mt genomes. Conclusions We conclude that inter-minichromosomal tRNA gene translocation orientated towards the boundaries with the control region is a major contributing factor to the highly dynamic mitochondrial genome organization in the parasitic lice of mammals.


Sign in / Sign up

Export Citation Format

Share Document