unicellular eukaryote
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 41)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Igor Segota ◽  
Matthew M. Edwards ◽  
Arthur Campello ◽  
Brendan H. Rappazzo ◽  
Xiaoning Wang ◽  
...  

Abstract In studies of the unicellular eukaryote Dictyostelium discoideum, many have anecdotally observed that cell dilution below a certain "threshold density” causes cells to undergo a period of slow growth (lag). However, little is documented about the slow growth phase and the reason for different growth dynamics below and above this threshold density. In this paper, we extend and correct our earlier work to report an extensive set of experiments, including the use of new cell counting technology, that set this slow-to-fast growth transition on a much firmer biological basis. We show that dilution below a certain density (around 10E4 cells/ml) causes cells to grow slower on average and exhibit a large degree of variability: sometimes a sample does not lag at all, while sometimes it takes many moderate density cell cycle times to recover back to fast growth. We perform conditioned media experiments to demonstrate that a chemical signal mediates this endogenous phenomenon. Finally, we argue that while simple models involving fluid transport of signal molecules or cluster-based signaling explain typical behavior, they do not capture the high degree of variability between samples but nevertheless favor an intra-cluster mechanism.


2021 ◽  
Author(s):  
Mohammad Zeeshan ◽  
Declan Brady ◽  
Robert Markus ◽  
Sue Vaughan ◽  
David Ferguson ◽  
...  

AbstractThe centriole/basal body (CBB) is an evolutionarily conserved organelle acting as a microtubule organising centre (MTOC) to nucleate cilia, flagella and the centrosome. SAS4/CPAP is a conserved component associated with BB biogenesis in many model flagellated cells. Plasmodium, a divergent unicellular eukaryote and causative agent of malaria, displays an atypical closed mitosis with an MTOC, reminiscent of the acentriolar MTOC, embedded in the nuclear membrane at most proliferative stages. Mitosis during male gamete formation is accompanied by flagellum formation: within 15 minutes, genome replication (from 1N to 8N) and three successive rounds of mitosis without nuclear division occur, with coordinated axoneme biogenesis in the cytoplasm resulting in eight flagellated gametes. There are two MTOCs in male gametocytes. An acentriolar MTOC located with the nuclear envelope and a centriolar MTOC (basal body) located within the cytoplasm that are required for flagellum assembly. To study the location and function of SAS4 during this rapid process, we examined the spatial profile of SAS4 in real time by live cell imaging and its function by gene deletion. We show its absence during asexual proliferation but its presence and coordinated association and assembly of SAS4 with another basal body component, kinesin8B, which is involved in axoneme biogenesis. In contrast its separation from the nuclear kinetochore marker NDC80 suggests that SAS4 is part of the basal body and outer centriolar MTOC residing in the cytoplasm. However, deletion of the SAS4 gene produced no phenotype, indicating that it is not essential for male gamete formation or parasite transmission through the mosquito.


2021 ◽  
Author(s):  
Fauzy Nasher ◽  
Brendan W. Wren

The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide and is a major public health problem. The ability of C. jejuni to interact and potentially invade epithelial cells is thought to be key for disease development in humans. We examined C. jejuni grown under standard laboratory conditions,11168HCBA with that harvested from within Acanthamoeba castellanii (11168HAC/CBA) or Acanthamoeba polyphaga (11168HAP/CBA), and compared their ability to invade different cell lines. C. jejuni harvested from within amoebae had a ~3.7-fold increase in invasiveness into T84 human epithelial cells and a striking ~11-fold increase for re-entry into A. castellanii cells. We also investigated the invasiveness and survivability of six diverse representative C. jejuni strains within Acanthamoeba spp., our results confirm that invasion and survivability is likely host cell dependent. Our survival assay data led us to conclude that Acanthamoeba spp. are a transient host for C. jejuni and that survival within amoebae pre-adapts C. jejuni and enhances subsequent cell invasion. This study provides new insight into C. jejuni interactions with amoebae and its increased invasiveness potential in mammalian hosts.


2021 ◽  
Vol 9 (9) ◽  
pp. 1979
Author(s):  
Valerio Vitali ◽  
Rebecca Rothering ◽  
Francesco Catania

Amitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis have been gleaned by assessing the rate of phenotypic assortment. Though powerful, this experimental approach relies on the availability of phenotypic markers. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dualism and a highly polyploid somatic nucleus, we probe the limits of single-cell whole-genome sequencing to study the consequences of amitosis. To this end, we first evaluate the suitability of single-cell sequencing to study the AT-rich genome of P. tetraurelia, focusing on common sources of genome representation bias. We then asked: can alternative rearrangements of a given locus eventually assort after a number of amitotic divisions? To address this question, we track somatic assortment of developmentally acquired Internal Eliminated Sequences (IESs) up to 50 amitotic divisions post self-fertilization. To further strengthen our observations, we contrast empirical estimates of IES retention levels with in silico predictions obtained through mathematical modeling. In agreement with theoretical expectations, our empirical findings are consistent with a mild increase in variation of IES retention levels across successive amitotic divisions of the macronucleus. The modest levels of somatic assortment in P. tetraurelia suggest that IESs retention levels are largely sculpted at the time of macronuclear development, and remain fairly stable during vegetative growth. In forgoing the requirement for phenotypic assortment, our approach can be applied to a wide variety of amitotic species and could facilitate the identification of environmental and genetic factors affecting amitosis.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 937
Author(s):  
D.C. Ghislaine Mayer

Plasmodium falciparum is a unicellular eukaryote with a very polarized secretory system composed of micronemes rhoptries and dense granules that are required for host cell invasion. P. falciparum, like its relative T. gondii, uses the endolysosomal system to produce the secretory organelles and to ingest host cell proteins. The parasite also has an apicoplast, a secondary endosymbiotic organelle, which depends on vesicular trafficking for appropriate incorporation of nuclear-encoded proteins into the apicoplast. Recently, the central molecules responsible for sorting and trafficking in P. falciparum and T. gondii have been characterized. From these studies, it is now evident that P. falciparum has repurposed the molecules of the endosomal system to the secretory pathway. Additionally, the sorting and vesicular trafficking mechanism seem to be conserved among apicomplexans. This review described the most recent findings on the molecular mechanisms of protein sorting and vesicular trafficking in P. falciparum and revealed that P. falciparum has an amazing secretory machinery that has been cleverly modified to its intracellular lifestyle.


PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001359
Author(s):  
Stefan Allmann ◽  
Marion Wargnies ◽  
Nicolas Plazolles ◽  
Edern Cahoreau ◽  
Marc Biran ◽  
...  

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as “catabolite repression,” allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named “metabolic contest” for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This “metabolic contest” depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.


Open Biology ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 210116
Author(s):  
Silje Anda ◽  
Erik Boye ◽  
Kay Oliver Schink ◽  
Beata Grallert

Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes ‘old’ from ‘new’ and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe . To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe , chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish ‘old’ from ‘new’ and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.


2021 ◽  
Vol 22 (13) ◽  
pp. 7101
Author(s):  
Sandra M. Kerbler ◽  
Roberto Natale ◽  
Alisdair R. Fernie ◽  
Youjun Zhang

The study of protein–protein interactions (PPIs) is fundamental in understanding the unique role of proteins within cells and their contribution to complex biological systems. While the toolkit to study PPIs has grown immensely in mammalian and unicellular eukaryote systems over recent years, application of these techniques in plants remains under-utilized. Affinity purification coupled to mass spectrometry (AP-MS) and proximity labeling coupled to mass spectrometry (PL-MS) are two powerful techniques that have significantly enhanced our understanding of PPIs. Relying on the specific binding properties of a protein to an immobilized ligand, AP is a fast, sensitive and targeted approach used to detect interactions between bait (protein of interest) and prey (interacting partners) under near-physiological conditions. Similarly, PL, which utilizes the close proximity of proteins to identify potential interacting partners, has the ability to detect transient or hydrophobic interactions under native conditions. Combined, these techniques have the potential to reveal an unprecedented spatial and temporal protein interaction network that better understands biological processes relevant to many fields of interest. In this review, we summarize the advantages and disadvantages of two increasingly common PPI determination techniques: AP-MS and PL-MS and discuss their important application to plant systems.


2021 ◽  
Author(s):  
Benoît REVEL ◽  
Patrice CATTY ◽  
Stéphane RAVANEL ◽  
Jacques BOURGUIGNON ◽  
Claude ALBAN

Uranium (U) is a naturally-occurring radionuclide toxic for living organisms that can take it up. To date, the mechanisms of U uptake are far from being understood. Here, we used the yeast Saccharomyces cerevisiae as a unicellular eukaryote model to identify U assimilation pathways. Thus, we have identified, for the first time, transport machineries capable of transporting U in a living organism. First, we evidenced a metabolism-dependent U transport in yeast. Then, competition experiments with essential metals allowed us to identify calcium, iron and copper entry pathways as potential routes for U uptake. The analysis of various metal transport mutants revealed that mid1Δ, cch1Δ and ftr1Δ mutants, affected in calcium (Mid1/Cch1 channel) and Fe(III) (Ftr1/Fet3 complex) transport, respectively, exhibited highly reduced U uptake rates and accumulation, demonstrating the implication of these import systems in U uptake. Finally, expression of the Mid1 gene into the mid1Δ mutant restored U uptake levels of the wild type strain, underscoring the central role of the Mid1/Cch1 calcium channel in U absorption process in yeast. Our results also open up the opportunity for rapid screening of U-transporter candidates by functional expression in yeast, before their validation in more complex higher eukaryote model systems.


mSphere ◽  
2021 ◽  
Author(s):  
Yalan Sheng ◽  
Bo Pan ◽  
Fan Wei ◽  
Yuanyuan Wang ◽  
Shan Gao

Increasing evidence indicated that 6mA could respond to environmental stressors in multicellular eukaryotes. As 6mA distribution and function differ significantly in multicellular and unicellular organisms, whether and how 6mA in unicellular eukaryotes responds to environmental stress remains elusive.


Sign in / Sign up

Export Citation Format

Share Document