scholarly journals Superrepellency of underwater hierarchical structures on Salvinia leaf

2020 ◽  
Vol 117 (5) ◽  
pp. 2282-2287 ◽  
Author(s):  
Yaolei Xiang ◽  
Shenglin Huang ◽  
Tian-Yun Huang ◽  
Ao Dong ◽  
Di Cao ◽  
...  

Biomimetic superhydrophobic surfaces display many excellent underwater functionalities, which attribute to the slippery air mattress trapped in the structures on the surface. However, the air mattress is easy to collapse due to various disturbances, leading to the fully wetted Wenzel state, while the water filling the microstructures is difficult to be repelled to completely recover the air mattress even on superhydrophobic surfaces like lotus leaves. Beyond superhydrophobicity, here we find that the floating fern, Salvinia molesta, has the superrepellent capability to efficiently replace the water in the microstructures with air and robustly recover the continuous air mattress. The hierarchical structures on the leaf surface are demonstrated to be crucial to the recovery. The interconnected wedge-shaped grooves between epidermal cells are key to the spontaneous spreading of air over the entire leaf governed by a gas wicking effect to form a thin air film, which provides a base for the later growth of the air mattress in thickness synchronously along the hairy structures. Inspired by nature, biomimetic artificial Salvinia surfaces are fabricated using 3D printing technology, which successfully achieves a complete recovery of a continuous air mattress to exactly imitate the superrepellent capability of Salvinia leaves. This finding will benefit the design principles of water-repellent materials and expand their underwater applications, especially in extreme environments.

Author(s):  
Chuan-Hua Chen ◽  
Qingjun Cai ◽  
Chung-Lung Chen

Superhydrophobic surfaces exhibit large contact angle and small hysteresis which promote liquid transport and enhance heat transfer. Here, liquid-vapor phase change behavior is reported on superhydrophobic surfaces with short carbon nanotubes deposited on micromachined posts, a two-tier texture mimicking the surface structure of lotus leaves. Compared to one-tier microtexture which energetically favors the Wenzel state, the two-tier texture with nanoscale roughness favors the Cassie state, the desired superhydrophobic state. During droplet evaporation, the two-tier texture delays the transition from Cassie to Wenzel state. Using two-tier texture with hexadeconethiol coating, continuous dropwise condensation was demonstrated for the first time on engineered superhydrophobic surfaces.


RSC Advances ◽  
2017 ◽  
Vol 7 (70) ◽  
pp. 44239-44246 ◽  
Author(s):  
Fan Song ◽  
Cuiqing Wu ◽  
Hailong Chen ◽  
Qi Liu ◽  
Jingyuan Liu ◽  
...  

Inspired by lotus leaves and pitcher plants, superhydrophobic surfaces and super slippery surfaces have been fabricated to improve the characteristics of AZ31 magnesium alloy surfaces.


2014 ◽  
Vol 633-634 ◽  
pp. 764-768
Author(s):  
Jian Ye Huang ◽  
Feng Hui Wang

Keeping the water-repellent stability of superhydrophobic surface is necessary in application. Based on the total reflection of Cassie interface and vacuum technique, the superhydrophobic stability of the lotus leaf and an artificial material was investigated. The results show that during the Cassie-Wenzel transition, primary wetting transition occurs at a certain pressure that in accordance with theoretical prediction. However, when the air film is entrapped between microstructures, stability of water-repellency was greatly enhanced, and part of the wetting transition can be recovered when the pressure was released. Due to the micro-and nanoscale hierarchical structures, the lotus leaf shows better water-repellent stability and dewetting property than the artificial superhydrophobic surface when the hydrostatic pressure was applied and released.


RSC Advances ◽  
2018 ◽  
Vol 8 (64) ◽  
pp. 36697-36704 ◽  
Author(s):  
Takashi Yanagishita ◽  
Kaito Murakoshi ◽  
Toshiaki Kondo ◽  
Hideki Masuda

Superhydrophobic surface with hierarchical structures prepared by nanoimprinting using anodic porous alumina molds.


Langmuir ◽  
2016 ◽  
Vol 33 (1) ◽  
pp. 407-416 ◽  
Author(s):  
Huaping Wu ◽  
Zhe Yang ◽  
Binbin Cao ◽  
Zheng Zhang ◽  
Kai Zhu ◽  
...  

2012 ◽  
Vol 21 (1-2) ◽  
pp. 21-32 ◽  
Author(s):  
Ioannis Karapanagiotis ◽  
Panagiotis Manoudis

AbstractSuperhydrophobicity – also known as water repellency – has recently attracted considerable attention because of its numerous potential applications. However, the fundamental concepts and equations describing the wettability of superhydrophobic surfaces have been known since the 1940s. These concepts are reviewed and discussed in the present feature article in light of the recent developments. Furthermore, the potential use of water-repellent siloxane-nanoparticle composites for surface protection and consolidation of stones and mortars used in outdoor objects of cultural heritage is investigated. Finally, it is shown that the wettability of the composite surfaces can be predicted by the Cassie-Baxter equation.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 668
Author(s):  
Wang ◽  
Zhao

Superhydrophobicity, showing strong water-repellency, has been widely investigated for many applications, especially in the fields of corrosion protection and antifouling. Water tends to roll off from superhydrophobic surfaces like natural lotus leaves[...]


Sign in / Sign up

Export Citation Format

Share Document