scholarly journals Superhydrophobic surfaces

2012 ◽  
Vol 21 (1-2) ◽  
pp. 21-32 ◽  
Author(s):  
Ioannis Karapanagiotis ◽  
Panagiotis Manoudis

AbstractSuperhydrophobicity – also known as water repellency – has recently attracted considerable attention because of its numerous potential applications. However, the fundamental concepts and equations describing the wettability of superhydrophobic surfaces have been known since the 1940s. These concepts are reviewed and discussed in the present feature article in light of the recent developments. Furthermore, the potential use of water-repellent siloxane-nanoparticle composites for surface protection and consolidation of stones and mortars used in outdoor objects of cultural heritage is investigated. Finally, it is shown that the wettability of the composite surfaces can be predicted by the Cassie-Baxter equation.

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 753 ◽  
Author(s):  
Xiang ◽  
Lv ◽  
Wei ◽  
Liu ◽  
Dong ◽  
...  

Superhydrophobic surfaces have drawn attention from scientists and engineers because of their extreme water repellency. More interestingly, these surfaces have also demonstrated an infinite influence on civil engineering materials. In this feature article, the history of wettability theory is described firstly. The approaches to construct hierarchical micro/nanostructures such as chemical vapor deposition (CVD), electrochemical, etching, and flame synthesis methods are introduced. Then, the advantages and limitations of each method are discussed. Furthermore, the recent progress of superhydrophobicity applied on civil engineering materials and its applications are summarized. Finally, the obstacles and prospects of superhydrophobic civil engineering materials are stated and expected. This review should be of interest to scientists and civil engineers who are interested in superhydrophobic surfaces and novel civil engineering materials.


Author(s):  
JI SEONG CHOI ◽  
SEONG MIN KANG

In this paper, we fabricate and evaluate superhydrophobic surfaces with mushroom-shaped microstructures. Using a silicon master and polymer microstructure patterning, polydimethylsiloxane (PDMS) surfaces bearing mushroom-shaped structures with five different spacing ratios are prepared and tested with water droplets of different temperatures. The fabricated PDMS surfaces demonstrate superhydrophobicity even to high-temperature water droplets with decreased surface tension. We compare the experimental data with the theoretical results calculated based on the Cassie state and Eötvös rule. Our work suggests potential applications to control wettability with liquids of various temperatures.


2019 ◽  
Vol 55 (56) ◽  
pp. 8036-8059 ◽  
Author(s):  
Bo Li ◽  
Tian He ◽  
Yiqi Fan ◽  
Xinchao Yuan ◽  
Huayu Qiu ◽  
...  

This feature article summarized the recent progress on the construction of metallacycle/metallacage-cored supramolecular polymers by the hierarchical self-assembly, and the potential applications in the areas of light emitting, sensing, bio-imaging, delivery and release, etc., are also presented.


2016 ◽  
Vol 52 (25) ◽  
pp. 4602-4612 ◽  
Author(s):  
Yue Sun ◽  
Junkai Ma ◽  
Demei Tian ◽  
Haibing Li

In this feature article, we discuss recent developments in macroscopic contact angle switches formed by different macrocyclic hosts and highlight the properties of these new functional surfaces and their potential applications.


2014 ◽  
Vol 25 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Stefan Hey ◽  
Panagiota Anastasopoulou ◽  
André Bideaux ◽  
Wilhelm Stork

Ambulatory assessment of emotional states as well as psychophysiological, cognitive and behavioral reactions constitutes an approach, which is increasingly being used in psychological research. Due to new developments in the field of information and communication technologies and an improved application of mobile physiological sensors, various new systems have been introduced. Methods of experience sampling allow to assess dynamic changes of subjective evaluations in real time and new sensor technologies permit a measurement of physiological responses. In addition, new technologies facilitate the interactive assessment of subjective, physiological, and behavioral data in real-time. Here, we describe these recent developments from the perspective of engineering science and discuss potential applications in the field of neuropsychology.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 258
Author(s):  
S. Stalin ◽  
R. Ramakrishnan ◽  
M. Lakshmanan

Nonlinear dynamics of an optical pulse or a beam continue to be one of the active areas of research in the field of optical solitons. Especially, in multi-mode fibers or fiber arrays and photorefractive materials, the vector solitons display rich nonlinear phenomena. Due to their fascinating and intriguing novel properties, the theory of optical vector solitons has been developed considerably both from theoretical and experimental points of view leading to soliton-based promising potential applications. Mathematically, the dynamics of vector solitons can be understood from the framework of the coupled nonlinear Schrödinger (CNLS) family of equations. In the recent past, many types of vector solitons have been identified both in the integrable and non-integrable CNLS framework. In this article, we review some of the recent progress in understanding the dynamics of the so called nondegenerate vector bright solitons in nonlinear optics, where the fundamental soliton can have more than one propagation constant. We address this theme by considering the integrable two coupled nonlinear Schrödinger family of equations, namely the Manakov system, mixed 2-CNLS system (or focusing-defocusing CNLS system), coherently coupled nonlinear Schrödinger (CCNLS) system, generalized coupled nonlinear Schrödinger (GCNLS) system and two-component long-wave short-wave resonance interaction (LSRI) system. In these models, we discuss the existence of nondegenerate vector solitons and their associated novel multi-hump geometrical profile nature by deriving their analytical forms through the Hirota bilinear method. Then we reveal the novel collision properties of the nondegenerate solitons in the Manakov system as an example. The asymptotic analysis shows that the nondegenerate solitons, in general, undergo three types of elastic collisions without any energy redistribution among the modes. Furthermore, we show that the energy sharing collision exhibiting vector solitons arises as a special case of the newly reported nondegenerate vector solitons. Finally, we point out the possible further developments in this subject and potential applications.


2021 ◽  
pp. 030098582199932
Author(s):  
Laura Bongiovanni ◽  
Anneloes Andriessen ◽  
Marca H. M. Wauben ◽  
Esther N. M. Nolte-’t Hoen ◽  
Alain de Bruin

With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.


Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


Soft Matter ◽  
2021 ◽  
Author(s):  
Yuxing Shan ◽  
shuai liang ◽  
Xiangkai Mao ◽  
Jie Lu ◽  
Lili Liu ◽  
...  

Abstract. Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in deterioration of the...


2012 ◽  
Vol 549 ◽  
pp. 733-736
Author(s):  
Xiao Mian Chen ◽  
Jing Jing Shi ◽  
Hong Sha Su ◽  
Chun Ting Lin ◽  
En Long Yang

The catalytic properties of nano-TiO2 modified fabric suits the demand for self-cleaning in recent years. In this paper, advanced and innovative technology were used to synthesize water sol of titanium dioxide photocatalyst with high catalytic activity for fabric finishing. The wear behavior, antibacterial property and water repellency of treated and untreated fabric were tested. Results indicate that finishing and washing of the titanium dioxide had no effect on wear behavior; finished and washed fabric has a certain antibacterial and water repellent properties.


Sign in / Sign up

Export Citation Format

Share Document