scholarly journals Satellite observations reveal extreme methane leakage from a natural gas well blowout

2019 ◽  
Vol 116 (52) ◽  
pp. 26376-26381 ◽  
Author(s):  
Sudhanshu Pandey ◽  
Ritesh Gautam ◽  
Sander Houweling ◽  
Hugo Denier van der Gon ◽  
Pankaj Sadavarte ◽  
...  

Methane emissions due to accidents in the oil and natural gas sector are very challenging to monitor, and hence are seldom considered in emission inventories and reporting. One of the main reasons is the lack of measurements during such events. Here we report the detection of large methane emissions from a gas well blowout in Ohio during February to March 2018 in the total column methane measurements from the spaceborne Tropospheric Monitoring Instrument (TROPOMI). From these data, we derive a methane emission rate of 120 ± 32 metric tons per hour. This hourly emission rate is twice that of the widely reported Aliso Canyon event in California in 2015. Assuming the detected emission represents the average rate for the 20-d blowout period, we find the total methane emission from the well blowout is comparable to one-quarter of the entire state of Ohio’s reported annual oil and natural gas methane emission, or, alternatively, a substantial fraction of the annual anthropogenic methane emissions from several European countries. Our work demonstrates the strength and effectiveness of routine satellite measurements in detecting and quantifying greenhouse gas emission from unpredictable events. In this specific case, the magnitude of a relatively unknown yet extremely large accidental leakage was revealed using measurements of TROPOMI in its routine global survey, providing quantitative assessment of associated methane emissions.

2018 ◽  
Vol 115 (46) ◽  
pp. 11712-11717 ◽  
Author(s):  
Timothy L. Vaughn ◽  
Clay S. Bell ◽  
Cody K. Pickering ◽  
Stefan Schwietzke ◽  
Garvin A. Heath ◽  
...  

This study spatially and temporally aligns top-down and bottom-up methane emission estimates for a natural gas production basin, using multiscale emission measurements and detailed activity data reporting. We show that episodic venting from manual liquid unloadings, which occur at a small fraction of natural gas well pads, drives a factor-of-two temporal variation in the basin-scale emission rate of a US dry shale gas play. The midafternoon peak emission rate aligns with the sampling time of all regional aircraft emission studies, which target well-mixed boundary layer conditions present in the afternoon. A mechanistic understanding of emission estimates derived from various methods is critical for unbiased emission verification and effective greenhouse gas emission mitigation. Our results demonstrate that direct comparison of emission estimates from methods covering widely different timescales can be misleading.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaz5120 ◽  
Author(s):  
Yuzhong Zhang ◽  
Ritesh Gautam ◽  
Sudhanshu Pandey ◽  
Mark Omara ◽  
Joannes D. Maasakkers ◽  
...  

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world’s most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a−1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data–based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.


2021 ◽  
Vol 244 ◽  
pp. 117930 ◽  
Author(s):  
Xiaochi Zhou ◽  
Seungju Yoon ◽  
Steve Mara ◽  
Matthias Falk ◽  
Toshihiro Kuwayama ◽  
...  

Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Timothy L. Vaughn ◽  
Clay S. Bell ◽  
Tara I. Yacovitch ◽  
Joseph R. Roscioli ◽  
Scott C. Herndon ◽  
...  

Coordinated dual-tracer, aircraft-based, and direct component-level measurements were made at midstream natural gas gathering and boosting stations in the Fayetteville shale (Arkansas, USA). On-site component-level measurements were combined with engineering estimates to generate comprehensive facility-level methane emission rate estimates (“study on-site estimates (SOE)”) comparable to tracer and aircraft measurements. Combustion slip (unburned fuel entrained in compressor engine exhaust), which was calculated based on 111 recent measurements of representative compressor engines, accounts for an estimated 75% of cumulative SOEs at gathering stations included in comparisons. Measured methane emissions from regenerator vents on glycol dehydrator units were substantially larger than predicted by modelling software; the contribution of dehydrator regenerator vents to the cumulative SOE would increase from 1% to 10% if based on direct measurements. Concurrent measurements at 14 normally-operating facilities show relative agreement between tracer and SOE, but indicate that tracer measurements estimate lower emissions (regression of tracer to SOE = 0.91 (95% CI = 0.83–0.99), R2 = 0.89). Tracer and SOE 95% confidence intervals overlap at 11/14 facilities. Contemporaneous measurements at six facilities suggest that aircraft measurements estimate higher emissions than SOE. Aircraft and study on-site estimate 95% confidence intervals overlap at 3/6 facilities. The average facility level emission rate (FLER) estimated by tracer measurements in this study is 17–73% higher than a prior national study by Marchese et al.


2014 ◽  
Vol 14 (20) ◽  
pp. 10977-10988 ◽  
Author(s):  
C. Warneke ◽  
F. Geiger ◽  
P. M. Edwards ◽  
W. Dube ◽  
G. Pétron ◽  
...  

Abstract. Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.


2017 ◽  
Vol 08 (04) ◽  
pp. 394-415 ◽  
Author(s):  
Eben D. Thoma ◽  
Parikshit Deshmukh ◽  
Russell Logan ◽  
Michael Stovern ◽  
Chris Dresser ◽  
...  

2020 ◽  
Author(s):  
David R. Lyon ◽  
Benjamin Hmiel ◽  
Ritesh Gautam ◽  
Mark Omara ◽  
Kate Roberts ◽  
...  

Abstract. Methane emissions associated with the production, transport, and use of oil and natural gas increase the climatic impacts of energy use; however, little is known about how emissions vary temporally and with commodity prices. We present airborne and ground-based data, supported by satellite observations, to measure weekly to monthly changes in total methane emissions in the United States’ Permian Basin during a period of volatile oil prices associated with the COVID-19 pandemic. As oil prices declined from ~$ 60 to $ 20 per barrel, emissions changed concurrently from 3.4 % to 1.5 % of gas production; as prices partially recovered, emissions increased back to near initial values. Concurrently, total oil and natural gas production only declined by a maximum of ~10 % from the peak values seen in the months prior to the crash. Activity data indicate that a rapid decline in well development and subsequent effects on associated gas flaring and midstream infrastructure throughput are the likely drivers of temporary emission reductions. Our results, along with past satellite observations, suggest that under more typical price conditions, the Permian Basin is in a state of overcapacity in which rapidly growing natural gas production exceeds midstream capacity and leads to high methane emissions.


Sign in / Sign up

Export Citation Format

Share Document