scholarly journals Shockley–Queisser triangle predicts the thermodynamic efficiency limits of arbitrarily complex multijunction bifacial solar cells

2019 ◽  
Vol 116 (48) ◽  
pp. 23966-23971 ◽  
Author(s):  
Muhammad A. Alam ◽  
M. Ryyan Khan

As monofacial, single-junction solar cells approach their fundamental limits, there has been significant interest in tandem solar cells in the presence of concentrated sunlight or tandem bifacial solar cells with back-reflected albedo. The bandgap sequence and thermodynamic efficiency limits of these complex cell configurations require sophisticated numerical calculation. Therefore, the analyses of specialized cases are scattered throughout the literature. In this paper, we show that a powerful graphical approach called the normalized “Shockley–Queisser (S-Q) triangle” (i.e., imp=1−vmp) is sufficient to calculate the bandgap sequence and efficiency limits of arbitrarily complex photovoltaic (PV) topologies. The results are validated against a wide variety of specialized cases reported in the literature and are accurate within a few percent. We anticipate that the widespread use of the S-Q triangle will illuminate the deeper physical principles and design trade-offs involved in the design of bifacial tandem solar cells under arbitrary concentration and series resistance.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1860
Author(s):  
Mehmet Koç ◽  
Giray Kartopu ◽  
Selcuk Yerci

Although the fundamental limits have been established for the single junction solar cells, tandem configurations are one of the promising approaches to surpass these limits. One of the candidates for the top cell absorber is CdTe, as the CdTe photovoltaic technology has significant advantages: stability, high performance, and relatively inexpensive. In addition, it is possible to tune the CdTe bandgap by introducing, for example, Zn into the composition, forming Cd1−xZnxTe alloys, which can fulfill the Shockley–Queisser limit design criteria for tandem devices. The interdigitated back contact (IBC) silicon solar cells presented record high efficiencies recently, making them an attractive candidate for the rear cell. In this work, we present a combined optical and electrical optimization of Cd1−xZnxTe/IBC Si tandem configurations. Optical and electrical loss mechanisms are addressed, and individual layers are optimized. Alternative electron transport layers and transparent conductive electrodes are discussed for maximizing the top cell and tandem efficiency.


Author(s):  
Cenqi Yan ◽  
Jiaming Huang ◽  
Dong Dong Li ◽  
Gang Li

Tandem solar cells (TSCs) are devices made of multiple junctions with complementary absorption ranges, which aim to overcome the Shockley–Queisser limit of single-junction solar cells. Currently, metal-halide hybrid perovskite solar...


Solar RRL ◽  
2021 ◽  
Author(s):  
Mohammad Ismail Hossain ◽  
Md. Shahiduzzaman ◽  
Ahmed Mortuza Saleque ◽  
Md. Rashedul Huqe ◽  
Wayesh Qarony ◽  
...  

2010 ◽  
Vol 96 (15) ◽  
pp. 153502 ◽  
Author(s):  
M. Carmody ◽  
S. Mallick ◽  
J. Margetis ◽  
R. Kodama ◽  
T. Biegala ◽  
...  

2012 ◽  
Vol 1426 ◽  
pp. 125-130
Author(s):  
Y.W. Tseng ◽  
Y.H. Lin ◽  
H.J. Hsu ◽  
C.H. Hsu ◽  
C.C. Tsai

ABSTRACTIn this work, the development of hydrogenated amorphous silicon oxide (a-SiOx:H) absorber, a-SiOx:H single-junction solar cells and a-SiOx:H/a-Si1-xGex:H tandem solar cells were presented. The oxygen content of the a-SiOx:H materials controlled by changing CO2-to-SiH4 flow ratio had significant influence on its opto-electrical property. As CO2/SiH4 increased from 0 to 2, the bandgap increased from 1.75 to 2.13 eV while the photo-conductivity decreased from 8.25×10-6 to 1.02×10-8 S/cm. Photo-response of over 105 can be obtained as the bandgap was approximately 1.90 eV. The performance of single-junction solar cells revealed a better efficiency can be obtained as the absorber bandgap was in the range of 1.83 to 1.90 eV. Further increase of the absorber bandgap may lead to the increase in bulk defect density which deteriorated the cell efficiency. Finally, a-SiOx:H/a-Si1-xGex:H tandem solar cell was fabricated with the absorber bandgap of 1.90 eV in the top cell. By matching the current between the component cells, the tandem cell efficiency of 7.38% has been achieved.


2017 ◽  
Vol 5 (7) ◽  
pp. 3186-3192 ◽  
Author(s):  
Lin Mao ◽  
Jinhui Tong ◽  
Sixing Xiong ◽  
Fangyuan Jiang ◽  
Fei Qin ◽  
...  

Tandem structures have higher defect tolerance than single-junction. 10.5 cm2flexible tandem solar cells yielding a PCE of 6.5%.


Sign in / Sign up

Export Citation Format

Share Document