scholarly journals Small-molecule covalent bond formation at tyrosine creates a binding site and inhibits activation of Ral GTPases

2020 ◽  
Vol 117 (13) ◽  
pp. 7131-7139 ◽  
Author(s):  
Khuchtumur Bum-Erdene ◽  
Degang Liu ◽  
Giovanni Gonzalez-Gutierrez ◽  
Mona K. Ghozayel ◽  
David Xu ◽  
...  

Ral (Ras-like) GTPases are directly activated by oncogenic Ras GTPases. Mutant K-Ras (G12C) has enabled the development of covalent K-Ras inhibitors currently in clinical trials. However, Ral, and the overwhelming majority of mutant oncogenic K-Ras, are devoid of a druggable pocket and lack an accessible cysteine for the development of a covalent inhibitor. Here, we report that covalent bond formation by an aryl sulfonyl fluoride electrophile at a tyrosine residue (Tyr-82) inhibits guanine exchange factor Rgl2-mediated nucleotide exchange of Ral GTPase. A high-resolution 1.18-Å X-ray cocrystal structure shows that the compound binds to a well-defined binding site in RalA as a result of a switch II loop conformational change. The structure, along with additional high-resolution crystal structures of several analogs in complex with RalA, confirm the importance of key hydrogen bond anchors between compound sulfone oxygen atoms and Ral backbone nitrogen atoms. Our discovery of a pocket with features found on known druggable sites and covalent modification of a bystander tyrosine residue present in Ral and Ras GTPases provide a strategy that could lead to therapeutic agent targeting oncogenic Ras mutants that are devoid of a cysteine nucleophile.

2020 ◽  
Author(s):  
Angus Voice ◽  
Gary Tresadern ◽  
Rebecca Twidale ◽  
Herman Van Vlijmen ◽  
Adrian Mulholland

<p>Ibrutinib is the first covalent inhibitor of Bruton’s tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition is crucial for the design of safer and more selective covalent inhibitors that target BTK. There are questions surrounding the precise mechanism of covalent bond formation in BTK as there is no appropriate active site residue that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. To address this, we have investigated several mechanistic pathways of covalent modification of C481 in BTK by ibrutinib using QM/MM reaction simulations. The lowest energy pathway we identified involves a direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (DG<sup>‡</sup>=10.5 kcal mol<sup>-1</sup>) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and related proteins. </p>


2020 ◽  
Author(s):  
Angus Voice ◽  
Gary Tresadern ◽  
Rebecca Twidale ◽  
Herman Van Vlijmen ◽  
Adrian Mulholland

<p>Ibrutinib is the first covalent inhibitor of Bruton’s tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition is crucial for the design of safer and more selective covalent inhibitors that target BTK. There are questions surrounding the precise mechanism of covalent bond formation in BTK as there is no appropriate active site residue that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. To address this, we have investigated several mechanistic pathways of covalent modification of C481 in BTK by ibrutinib using QM/MM reaction simulations. The lowest energy pathway we identified involves a direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (DG<sup>‡</sup>=10.5 kcal mol<sup>-1</sup>) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and related proteins. </p>


2021 ◽  
Author(s):  
Bingqi Tong ◽  
Bridget Belcher ◽  
Daniel Nomura ◽  
Thomas Maimone

Electrophilic natural products have provided fertile ground for understanding how nature inhibits protein function using covalent bond formation. The fungal strain Gymnascella dankaliensis has provided an especially interesting collection of...


Author(s):  
Motofumi Osaki ◽  
Tomoko Sekine ◽  
Hiroyasu Yamaguchi ◽  
Yoshinori Takashima ◽  
Akira Harada

2021 ◽  
Author(s):  
Sreejith Mangalath ◽  
Suneesh C Karunakaran ◽  
Gary Newnam ◽  
Gary Schuster ◽  
Nicholas Hud

A goal of supramolecular chemistry is to create covalent polymers of precise composition and stereochemistry from complex mixtures by the reversible assembly of specific monomers prior to covalent bond formation....


2019 ◽  
Vol 58 (22) ◽  
pp. 7470-7474 ◽  
Author(s):  
Jan P. Menzel ◽  
Florian Feist ◽  
Bryan Tuten ◽  
Tanja Weil ◽  
James P. Blinco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document