covalent bond formation
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Sotiria Tavoulari ◽  
Tom J.J. Schirris ◽  
Vasiliki Mavridou ◽  
Chancievan Thangaratnarajah ◽  
Martin S. King ◽  
...  

The mitochondrial pyruvate carrier (MPC) has emerged as a promising drug target for metabolic disorders, including non-alcoholic steatohepatitis and diabetes, metabolically dependent cancers and neurodegenerative diseases. Human MPC is a protein complex, but the composition of its active form is debated and the mechanisms of transport and inhibition are not resolved. We have recombinantly expressed and purified the human hetero-complex MPC1L/MPC2 and demonstrate that it is a functional hetero-dimer, like the yeast MPC hetero-dimers. Unlike the latter, human MPC1L/MPC2 binds the known inhibitors with high potencies. We identify the essential chemical features shared between these structurally diverse inhibitors and demonstrate that high affinity binding is not attributed to covalent bond formation with MPC cysteines, as previously thought. We also identify 14 new inhibitors of MPC, one outperforming the most potent compound UK5099 by tenfold. Two of them are the commonly prescribed drugs entacapone and nitrofurantoin, suggesting possible off-target mechanisms associated with their adverse effects. This work advances our understanding of MPC inhibition and will accelerate the development of clinically relevant MPC modulators.


2021 ◽  
Vol 17 ◽  
pp. 2585-2610
Author(s):  
Pratibha Sharma ◽  
Raakhi Gupta ◽  
Raj Kumar Bansal

Nitrogen-containing scaffolds are ubiquitous in nature and constitute an important class of building blocks in organic synthesis. The asymmetric aza-Michael reaction (aza-MR) alone or in tandem with other organic reaction(s) is an important synthetic tool to form new C–N bond(s) leading to developing new libraries of diverse types of bioactive nitrogen compounds. The synthesis and application of a variety of organocatalysts for accomplishing highly useful organic syntheses without causing environmental pollution in compliance with ‘Green Chemistry” has been a landmark development in the recent past. Application of many of these organocatalysts has been extended to asymmetric aza-MR during the last two decades. The present article overviews the literature published during the last 10 years concerning the asymmetric aza-MR of amines and amides catalysed by organocatalysts. Both types of the organocatalysts, i.e., those acting through non-covalent interactions and those working through covalent bond formation have been applied for the asymmetric aza-MR. Thus, the review includes the examples wherein cinchona alkaloids, squaramides, chiral amines, phase-transfer catalysts and chiral bifunctional thioureas have been used, which activate the substrates through hydrogen bond formation. Most of these reactions are accompanied by high yields and enantiomeric excesses. On the other hand, N-heterocyclic carbenes and chiral pyrrolidine derivatives acting through covalent bond formation such as the iminium ions with the substrates have also been included. Wherever possible, a comparison has been made between the efficacies of various organocatalysts in asymmetric aza-MR.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Hiroyuki Yamane ◽  
Masaki Oura ◽  
Osamu Takahashi ◽  
Tomoko Ishihara ◽  
Noriko Yamazaki ◽  
...  

AbstractAdhesion is an interfacial phenomenon that is critical for assembling carbon structural composites for next-generation aircraft and automobiles. However, there is limited understanding of adhesion on the molecular level because of the difficulty in revealing the individual bonding factors. Here, using soft X-ray spectromicroscopy we show the physical and chemical states of an adhesive interface composed of a thermosetting polymer of 4,4’-diaminodiphenylsulfone-cured bisphenol A diglycidyl ether adhered to a thermoplastic polymer of plasma-treated polyetheretherketone. We observe multiscale phenomena in the adhesion mechanisms, including sub-mm complex interface structure, sub-μm distribution of the functional groups, and molecular-level covalent-bond formation. These results provide a benchmark for further research to examine how physical and chemical states correlate with adhesion, and demonstrate that soft X-ray imaging is a promising approach for visualizing the physical and chemical states at adhesive interfaces from the sub-mm level to the molecular level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haibin Zhou ◽  
Jianfeng Lu ◽  
Krishnapriya Chinnaswamy ◽  
Jeanne A. Stuckey ◽  
Liu Liu ◽  
...  

AbstractCullin-RING E3 ligases (CRLs) regulate the turnover of approximately 20% of mammalian cellular proteins. Neddylation of individual cullin proteins is essential for the activation of each CRL. We report herein the discovery of DI-1548 and DI-1859 as two potent, selective and covalent DCN1 inhibitors. These inhibitors selectively inhibit neddylation of cullin 3 in cells at low nanomolar concentrations and are 2–3 orders of magnitude more potent than our previously reported reversible DCN1 inhibitor. Mass spectrometric analysis and co-crystal structures reveal that these compounds employ a unique mechanism of covalent bond formation with DCN1. DI-1859 induces a robust increase of NRF2 protein, a CRL3 substrate, in mouse liver and effectively protects mice from acetaminophen-induced liver damage. Taken together, this study demonstrates the therapeutic potential of selective inhibition of cullin neddylation.


Author(s):  
Motofumi Osaki ◽  
Tomoko Sekine ◽  
Hiroyasu Yamaguchi ◽  
Yoshinori Takashima ◽  
Akira Harada

2021 ◽  
Author(s):  
Melanie Cheung See Kit ◽  
Samantha O. Shepherd ◽  
James Prell ◽  
Ian Webb

The combination of ion/ion chemistry with commercially available ion mobility/mass spectrometry systems has allowed rich structural information to be obtained for gaseous protein ions. Recently, the simple modification of such an instrument with an electrospray reagent source has allowed three-dimensional gas-phase interrogation of protein structures through covalent and non-covalent interactions coupled with collision cross section measurements. However, the energetics of these processes have not yet been studied quantitatively. In this work, previously developed Monte Carlo simulations of ion temperatures inside traveling wave ion guides are used to characterize the energetics of the transition state of activated ubiquitin cation/reagent anion long-lived complexes formed via ion/ion reactions. The ΔH<sup>‡</sup> and ΔS<sup>‡</sup> of major processes observed from collisional activation of long-lived gas phase ion/ion complexes, namely collision induced unfolding (CIU), covalent bond formation, or neutral loss of the anionic reagent via intramolecular proton transfer, were determined. Covalent bond formation via ion/ion complexes was found to be significantly lower energy compared to unfolding and bond cleavage. ΔG<sup>‡</sup> of activation of all three processes lie between 55 and 75 kJ/mol, easily accessible with moderate collisional activation. Bond formation is favored over reagent loss at lower activation energies, whereas reagent loss becomes competitive at higher collision energies. Though ΔG<sup>‡</sup> are between CIU of a precursor ion and covalent bond formation of its ion/ion product complex are comparable, our data suggest covalent bond formation does not require extensive isomerization, supporting evidence from previous structural studies that these ion/ion reactions measure compact gas phase structures.


2021 ◽  
Author(s):  
Melanie Cheung See Kit ◽  
Samantha O. Shepherd ◽  
James Prell ◽  
Ian Webb

The combination of ion/ion chemistry with commercially available ion mobility/mass spectrometry systems has allowed rich structural information to be obtained for gaseous protein ions. Recently, the simple modification of such an instrument with an electrospray reagent source has allowed three-dimensional gas-phase interrogation of protein structures through covalent and non-covalent interactions coupled with collision cross section measurements. However, the energetics of these processes have not yet been studied quantitatively. In this work, previously developed Monte Carlo simulations of ion temperatures inside traveling wave ion guides are used to characterize the energetics of the transition state of activated ubiquitin cation/reagent anion long-lived complexes formed via ion/ion reactions. The ΔH<sup>‡</sup> and ΔS<sup>‡</sup> of major processes observed from collisional activation of long-lived gas phase ion/ion complexes, namely collision induced unfolding (CIU), covalent bond formation, or neutral loss of the anionic reagent via intramolecular proton transfer, were determined. Covalent bond formation via ion/ion complexes was found to be significantly lower energy compared to unfolding and bond cleavage. ΔG<sup>‡</sup> of activation of all three processes lie between 55 and 75 kJ/mol, easily accessible with moderate collisional activation. Bond formation is favored over reagent loss at lower activation energies, whereas reagent loss becomes competitive at higher collision energies. Though ΔG<sup>‡</sup> are between CIU of a precursor ion and covalent bond formation of its ion/ion product complex are comparable, our data suggest covalent bond formation does not require extensive isomerization, supporting evidence from previous structural studies that these ion/ion reactions measure compact gas phase structures.


2021 ◽  
Author(s):  
Sreejith Mangalath ◽  
Suneesh C Karunakaran ◽  
Gary Newnam ◽  
Gary Schuster ◽  
Nicholas Hud

A goal of supramolecular chemistry is to create covalent polymers of precise composition and stereochemistry from complex mixtures by the reversible assembly of specific monomers prior to covalent bond formation....


2021 ◽  
Author(s):  
Bingqi Tong ◽  
Bridget Belcher ◽  
Daniel Nomura ◽  
Thomas Maimone

Electrophilic natural products have provided fertile ground for understanding how nature inhibits protein function using covalent bond formation. The fungal strain Gymnascella dankaliensis has provided an especially interesting collection of...


Sign in / Sign up

Export Citation Format

Share Document