scholarly journals Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception

2020 ◽  
Vol 117 (40) ◽  
pp. 24837-24848
Author(s):  
Deepanshu Choudhary ◽  
Yoshie Narui ◽  
Brandon L. Neel ◽  
Lahiru N. Wimalasena ◽  
Carissa F. Klanseck ◽  
...  

The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link–mediated inner-ear sensory perception and elucidate protocadherin-15’s structural and adhesive properties relevant in disease.

2019 ◽  
Author(s):  
Deepanshu Choudhary ◽  
Yoshie Narui ◽  
Brandon L. Neel ◽  
Lahiru N. Wimalasena ◽  
Carissa F. Klanseck ◽  
...  

AbstractProtocadherin-15 (PCDH15), an atypical member of the cadherin superfamily, is essential for vertebrate hearing and its dysfunction has been associated with deafness and progressive blindness. The PCDH15 ectodomain, made of eleven extracellular cadherin (EC1-11) repeats and a membrane adjacent domain (MAD12), assembles as a parallel homodimer that interacts with cadherin-23 (CDH23) to form the tip link, a fine filament necessary for inner-ear mechanotransduction. Here we report X-ray crystal structures of a PCDH15 + CDH23 heterotetrameric complex and ten PCDH15 fragments that were used to build complete high-resolution models of the monomeric PCDH15 ectodomain. Using molecular dynamics (MD) simulations and validated crystal contacts we propose models for complete PCDH15 parallel homodimers and the tip-link bond. Steered MD simulations of these models predict their strength and suggest conditions in which a multimodal PCDH15 ectodomain can act as a stiff or soft gating spring. These results provide a detailed view of the first molecular steps in inner-ear sensory transduction.


2018 ◽  
Author(s):  
P. De-la-Torre ◽  
D. Choudhary ◽  
R. Araya-Secchi ◽  
Y. Narui ◽  
M. Sotomayor

ABSTRACTThe cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) repeats that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of non-classical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has eleven EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size exclusion chromatography coupled to multi-angle laser light scattering and small-angle X-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the “giant” FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Javier Oroz ◽  
Albert Galera-Prat ◽  
Rubén Hervás ◽  
Alejandro Valbuena ◽  
Débora Fernández-Bravo ◽  
...  

Abstract Hearing and balance rely on the transduction of mechanical stimuli arising from sound waves or head movements into electrochemical signals. This archetypal mechanoelectrical transduction process occurs in the hair-cell stereocilia of the inner ear, which experience continuous oscillations driven by undulations in the endolymph in which they are immersed. The filamentous structures called tip links, formed by an intertwined thread composed of an heterotypic complex of cadherin 23 and protocadherin 15 ectodomain dimers, connect each stereocilium to the tip of the lower sterocilium, and must maintain their integrity against continuous stimulatory deflections. By using single molecule force spectroscopy, here we demonstrate that in contrast to the case of classical cadherins, tip-link cadherins are mechanoresilient structures even at the exceptionally low Ca2+ concentration of the endolymph. We also show that the D101G deafness point mutation in cadherin 23, which affects a Ca2+ coordination site, exhibits an altered mechanical phenotype at the physiological Ca2+ concentration. Our results show a remarkable case of functional adaptation of a protein’s nanomechanics to extremely low Ca2+ concentrations and pave the way to a full understanding of the mechanotransduction mechanism mediated by auditory cadherins.


Sign in / Sign up

Export Citation Format

Share Document