crystal contacts
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 2)

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 952
Author(s):  
Narsimha Pujari ◽  
Stephanie L. Saundh ◽  
Francis A. Acquah ◽  
Blaine H. M. Mooers ◽  
Adrian R. Ferré-D’Amaré ◽  
...  

X-ray crystallography remains a powerful method to gain atomistic insights into the catalytic and regulatory functions of RNA molecules. However, the technique requires the preparation of diffraction-quality crystals. This is often a resource- and time-consuming venture because RNA crystallization is hindered by the conformational heterogeneity of RNA, as well as the limited opportunities for stereospecific intermolecular interactions between RNA molecules. The limited success at crystallization explains in part the smaller number of RNA-only structures in the Protein Data Bank. Several approaches have been developed to aid the formation of well-ordered RNA crystals. The majority of these are construct-engineering techniques that aim to introduce crystal contacts to favor the formation of well-diffracting crystals. A typical example is the insertion of tetraloop–tetraloop receptor pairs into non-essential RNA segments to promote intermolecular association. Other methods of promoting crystallization involve chaperones and crystallization-friendly molecules that increase RNA stability and improve crystal packing. In this review, we discuss the various techniques that have been successfully used to facilitate crystal packing of RNA molecules, recent advances in construct engineering, and directions for future research in this vital aspect of RNA crystallography.


2021 ◽  
Vol 77 (a1) ◽  
pp. a44-a44
Author(s):  
James Moody ◽  
Supeshala Sarath Nawarathnage ◽  
Sara Soleimani ◽  
Moriah Longhurst ◽  
Braydan Bezzant ◽  
...  

2021 ◽  
Vol 77 (a1) ◽  
pp. a46-a46
Author(s):  
Supeshala Sarath Nawarathnage ◽  
James Moody ◽  
Derick Bunn ◽  
Nathan Towne ◽  
Tzanko Duokov

2021 ◽  
Author(s):  
Supeshala Dilrukshi Sarath Nawarathnage ◽  
Sara Soleimani ◽  
Moriah H Mathis ◽  
Braydan D Bezzant ◽  
Diana T Ramírez ◽  
...  

We extend investigation into the usefulness of genetic fusion to TELSAM polymers as an effective protein crystallization strategy. We tested various numbers of the target protein fused per turn of the TELSAM helical polymer and various TELSAM–target connection strategies. We provide definitive evidence that: 1. A TELSAM–target protein fusion can crystallize more rapidly than the same target protein alone, 2. TELSAM–target protein fusions can form well-ordered, diffracting crystals using either flexible or rigid TELSAM–target linkers, 3. Well-ordered crystals can be obtained when either 2 or 6 copies of the target protein are presented per turn of the TELSAM helical polymer, 4. The TELSAM polymers themselves need not directly contact one another in the crystal lattice, and 5. Fusion to TELSAM polymer confers immense avidity to stabilize exquisitely weak inter-target protein crystal contacts. We report features of TELSAM-target protein crystals and outline future work needed to define the requirements for reliably obtaining optimal crystals of TELSAM–target protein fusions.


2021 ◽  
Vol 118 (26) ◽  
pp. e2026191118
Author(s):  
Simon Miller ◽  
Ashutosh Srivastava ◽  
Yoshiko Nagai ◽  
Yoshiki Aikawa ◽  
Florence Tama ◽  
...  

The circadian clock is a biological timekeeper that operates through transcription–translation feedback loops in mammals. Cryptochrome 1 (CRY1) and Cryptochrome 2 (CRY2) are highly conserved core clock components having redundant and distinct functions. We recently identified the CRY1- and CRY2-selective compounds KL101 and TH301, respectively, which provide useful tools for the exploration of isoform-selective CRY regulation. However, intrinsic differences in the compound-binding FAD (flavin adenine dinucleotide) pockets between CRY1 and CRY2 are not well understood, partly because of nonoptimal properties of previously reported apo form structures in this particular region constituted by almost identical sequences. Here, we show unliganded CRY1 and CRY2 crystal structures with well-defined electron densities that are largely free of crystal contacts at the FAD pocket and nearby lid loop. We revealed conformational isomerism in key residues. In particular, CRY1 W399 and corresponding CRY2 W417 in the FAD pocket had distinct conformations (“out” for CRY1 and “in” for CRY2) by interacting with the lid loop residues CRY1 Q407 and CRY2 F424, respectively, resulting in different overall lid loop structures. Molecular dynamics simulations supported that these conformations were energetically favorable to each isoform. Isoform-selective compounds KL101 and TH301 preferred intrinsic “out” and “in” conformations of the tryptophan residue in CRY1 and CRY2, respectively, while the nonselective compound KL001 fit to both conformations. Mutations of lid loop residues designed to perturb their isoform-specific interaction with the tryptophan resulted in reversed responses of CRY1 and CRY2 to KL101 and TH301. We propose that these intrinsic structural differences of CRY1 and CRY2 can be targeted for isoform-selective regulation.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3574
Author(s):  
Thammarat Aree

Protocatechuic aldehyde (PCAL) and protocatechuic acid (PCAC) are catechol derivatives and have broad therapeutic effects associated with their antiradical activity. Their pharmacological and physicochemical properties have been improved via the cyclodextrin (CD) encapsulation. Because the characteristics of b-CD inclusion complexes with PCAL (1) and PCAC (2) are still equivocal, we get to the bottom of the inclusion complexation by an integrated study of single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that PCAL and PCAC are nearly totally shielded in the b-CD wall. Their aromatic rings are vertically aligned in the b-CD cavity such that the functional groups on the opposite side of the ring (3,4-di(OH) and 1-CHO/1-COOH groups) are placed nearby the O6–H and O2–H/O3–H rims, respectively. The preferred inclusion modes in 1 and 2 help to establish crystal contacts of OH×××O H-bonds with the adjacent b-CD OH groups and water molecules. By contrast, the DFT-optimized structures of both complexes in the gas phase are thermodynamically stable via the four newly formed host–guest OH⋯O H-bonds. The intermolecular OH×××O H-bonds between PCAL/PCAC 3,4-di(OH) and b-CD O6–H groups, and the shielding of OH groups in the b-CD wall help to stabilize these antioxidants in the b-CD cavity, as observed in our earlier studies. Moreover, PCAL and PCAC in distinct lattice environments are compared for insights into their structural flexibility.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 588
Author(s):  
Johannes Hermann ◽  
Daniel Bischoff ◽  
Phillip Grob ◽  
Robert Janowski ◽  
Dariusch Hekmat ◽  
...  

Protein crystallization can function as an effective method for protein purification or formulation. Such an application requires a comprehensive understanding of the intermolecular protein–protein interactions that drive and stabilize protein crystal formation to ensure a reproducible process. Using alcohol dehydrogenase from Lactobacillus brevis (LbADH) as a model system, we probed in our combined experimental and computational study the effect of residue substitutions at the protein crystal contacts on the crystallizability and the contact stability. Increased or decreased contact stability was calculated using molecular dynamics (MD) free energy simulations and showed excellent qualitative correlation with experimentally determined increased or decreased crystallizability. The MD simulations allowed us to trace back the changes to their physical origins at the atomic level. Engineered charge–charge interactions as well as engineered hydrophobic effects could be characterized and were found to improve crystallizability. For example, the simulations revealed a redesigning of a water mediated electrostatic interaction (“wet contact”) into a water depleted hydrophobic effect (“dry contact”) and the optimization of a weak hydrogen bonding contact towards a strong one. These findings explained the experimentally found improved crystallizability. Our study emphasizes that it is difficult to derive simple rules for engineering crystallizability but that free energy simulations could be a very useful tool for understanding the contribution of crystal contacts for stability and furthermore could help guide protein engineering strategies to enhance crystallization for technical purposes.


2021 ◽  
Vol 118 (17) ◽  
pp. e2025107118
Author(s):  
Massimiliano Anselmi ◽  
Jochen S. Hub

The Src-homology-2 domain–containing phosphatase SHP2 is a critical regulator of signal transduction, being implicated in cell growth and differentiation. Activating mutations cause developmental disorders and act as oncogenic drivers in hematologic cancers. SHP2 is activated by phosphopeptide binding to the N-SH2 domain, triggering the release of N-SH2 from the catalytic PTP domain. Based on early crystallographic data, it has been widely accepted that opening of the binding cleft of N-SH2 serves as the key “allosteric switch” driving SHP2 activation. To test the putative coupling between binding cleft opening and SHP2 activation as assumed by the allosteric switch model, we critically reviewed structural data of SHP2, and we used extensive molecular dynamics (MD) simulation and free energy calculations of isolated N-SH2 in solution, SHP2 in solution, and SHP2 in a crystal environment. Our results demonstrate that the binding cleft in N-SH2 is constitutively flexible and open in solution and that a closed cleft found in certain structures is a consequence of crystal contacts. The degree of opening of the binding cleft has only a negligible effect on the free energy of SHP2 activation. Instead, SHP2 activation is greatly favored by the opening of the central β-sheet of N-SH2. We conclude that opening of the N-SH2 binding cleft is not the key allosteric switch triggering SHP2 activation.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 273
Author(s):  
Yoshita Srivastava ◽  
Rachel Bonn-Breach ◽  
Sai Shashank Chavali ◽  
Geoffrey M. Lippa ◽  
Jermaine L. Jenkins ◽  
...  

RNA plays a central role in all organisms and can fold into complex structures to orchestrate function. Visualization of such structures often requires crystallization, which can be a bottleneck in the structure-determination process. To promote crystallization, an RNA-recognition motif (RRM) of the U1A spliceosomal protein has been co-opted as a crystallization module. Specifically, the U1-snRNA hairpin II (hpII) single-stranded loop recognized by U1A can be transplanted into an RNA target to promote crystal contacts and to attain phase information via molecular replacement or anomalous diffraction methods using selenomethionine. Herein, we produced the F37M/F77M mutant of U1A to augment the phasing capability of this powerful crystallization module. Selenomethionine-substituted U1A(F37M/F77M) retains high affinity for hpII (KD of 59.7 ± 11.4 nM). The 2.20 Å resolution crystal structure reveals that the mutated sidechains make new S-π interactions in the hydrophobic core and are useful for single-wavelength anomalous diffraction. Crystals were also attained of U1A(F37M/F77M) in complex with a bacterial preQ1-II riboswitch. The F34M/F37M/F77M mutant was introduced similarly into a lab-evolved U1A variant (TBP6.9) that recognizes the internal bulged loop of HIV-1 TAR RNA. We envision that this short RNA sequence can be placed into non-essential duplex regions to promote crystallization and phasing of target RNAs. We show that selenomethionine-substituted TBP6.9(F34M/F37M/F77M) binds a TAR variant wherein the apical loop was replaced with a GNRA tetraloop (KD of 69.8 ± 2.9 nM), laying the groundwork for use of TBP6.9(F34M/F37M/F77M) as a crystallization module. These new tools are available to the research community.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Samuel Bowerman ◽  
Jeff Wereszczynski ◽  
Karolin Luger

Eukaryotes and many archaea package their DNA with histones. While the four eukaryotic histones wrap ~147 DNA base pairs into nucleosomes, archaeal histones form ‘nucleosome-like’ complexes that continuously wind between 60 and 500 base pairs of DNA (‘archaeasomes’), suggested by crystal contacts and analysis of cellular chromatin. Solution structures of large archaeasomes (>90 DNA base pairs) have never been directly observed. Here, we utilize molecular dynamics simulations, analytical ultracentrifugation, and cryoEM to structurally characterize the solution state of archaeasomes on longer DNA. Simulations reveal dynamics of increased accessibility without disruption of DNA-binding or tetramerization interfaces. Mg2+ concentration influences compaction, and cryoEM densities illustrate that DNA is wrapped in consecutive substates arranged 90o out-of-plane with one another. Without ATP-dependent remodelers, archaea may leverage these inherent dynamics to balance chromatin packing and accessibility.


Sign in / Sign up

Export Citation Format

Share Document