scholarly journals A new sea-level record for the Neogene/Quaternary boundary reveals transition to a more stable East Antarctic Ice Sheet

2020 ◽  
Vol 117 (49) ◽  
pp. 30980-30987
Author(s):  
Kim A. Jakob ◽  
Paul A. Wilson ◽  
Jörg Pross ◽  
Thomas H. G. Ezard ◽  
Jens Fiebig ◽  
...  

Sea-level rise resulting from the instability of polar continental ice sheets represents a major socioeconomic hazard arising from anthropogenic warming, but the response of the largest component of Earth’s cryosphere, the East Antarctic Ice Sheet (EAIS), to global warming is poorly understood. Here we present a detailed record of North Atlantic deep-ocean temperature, global sea-level, and ice-volume change for ∼2.75 to 2.4 Ma ago, when atmospheric partial pressure of carbon dioxide (pCO2) ranged from present-day (>400 parts per million volume, ppmv) to preindustrial (<280 ppmv) values. Our data reveal clear glacial–interglacial cycles in global ice volume and sea level largely driven by the growth and decay of ice sheets in the Northern Hemisphere. Yet, sea-level values during Marine Isotope Stage (MIS) 101 (∼2.55 Ma) also signal substantial melting of the EAIS, and peak sea levels during MIS G7 (∼2.75 Ma) and, perhaps, MIS G1 (∼2.63 Ma) are also suggestive of EAIS instability. During the succeeding glacial–interglacial cycles (MIS 100 to 95), sea levels were distinctly lower than before, strongly suggesting a link between greater stability of the EAIS and increased land-ice volumes in the Northern Hemisphere. We propose that lower sea levels driven by ice-sheet growth in the Northern Hemisphere decreased EAIS susceptibility to ocean melting. Our findings have implications for future EAIS vulnerability to a rapidly warming world.

2021 ◽  
Author(s):  
◽  
Georgia Grant

<p>The mid- to late Pliocene (3.3-2.6 Ma) spans one of the most significant climatic transitions of the Cenozoic. It is characterised by global cooling from a climate with an atmospheric CO2 concentration of ~400 ppm and temperatures of 2-3°C warmer-than-present, to one marked by the progressive expansion of ice sheets on northern hemisphere. Consequently, the mid-Pliocene warm period (MPWP; 3.3-3.0 Ma) provides the most accessible and recent geological analogue for global sea-level variability relevant to future warming. Global mean sea level has been estimated at 22 ± 10 m above present-day for MPWP. However, recent re-evaluations of this estimate suggest that spatially-varying visco-elastic responses of the crust, local gravitational changes and dynamic topography from mantle processes may preclude ever being able to reconstruct peak Pliocene mean sea level. The Whanganui Basin, New Zealand, contains a ~5 km thick stratigraphic succession of Pliocene-Pleistocene (last 5 Ma), shallow-marine, cyclical sedimentary sequences demonstrated to record orbitally-paced, glacial-interglacial global sea-level fluctuations. A limitation of the Whanganui sea level record, to date, has been an inability to resolve the full amplitude of glacial-interglacial water depth change due to the occurrence of cycle bounding unconformities representing sub-aerial erosion during glacial lowstands.  This thesis analyses a new ~900 m-thick, mid- (3.3-3.0 Ma) to late Pliocene (3.0-2.6 Ma), shallow-marine, cyclical sedimentary succession from a remote and relatively understudied part of Whanganui Basin. Unlike previous studies, these shelf sediments were continuously deposited, and were not eroded during sea-level lowstands, and thus provide the potential to reconstruct the full amplitude of glacial-interglacial sea-level change. On orbital timescales the influence of mantle dynamic processes is minimal. The approach taken applies lithofacies, sequence stratigraphy, and benthic foraminiferal analyses and a novel depth-dependent sediment grain size method to reconstruct the paleowater depths for, two continuously-cored drill holes, which are integrated with studies of outcropping sections. The thesis presents a new record of the amplitude and frequency of orbitally-paced, global sea-level changes from a wave-graded continental shelf, that is independent of the benthic δ¹⁸O proxy record of global ice-volume change.  Paleobathymetric interpretations are underpinned by analysis of extant benthic foraminiferal census data and a statistical correlation with the distribution of modern taxa. In general, water depths derived from foraminiferal modern analogue technique are consistent with variability recorded by lithofacies. The inferred sea-level cycles co-vary with a qualitative climate record reconstructed from a census of extant pollen and spores, and a modern temperature relationship. A high-resolution age model is established using magnetostratigraphy constrained by biostratigraphy, and the dating and correlation of tephra. This integrated chronostratigraphy allows the recognition of 23 individual sedimentary cycles, that are correlated “one-to-one” across the paleo-shelf and are compared to the deep-ocean benthic oxygen isotope (δ ¹⁸O) record.  A grain size-water depth technique was developed to quantify the paleobathymetry with more precision than the relatively insensitive benthic foraminifera approach. The method utilises a water depth threshold relationship between wave-induced near bed velocity and the velocity required to transport sand. The resulting paleobathymetric records of the most sensitive sites, the mid-Pliocene Siberia-1 drill core and the late Pliocene Rangitikei River section, were selected to compile a composite paleobathymetry. A one-dimensional backstripping method was then applied to remove the effects of tectonic subsidence, sediment and water loading on the record, to derive a relative sea level (RSL) curve.  The contribution of glacio-hydro-isostatic (GIA) processes to the RSL record was evaluated using a process-based forward numerical solid Earth model for a range of plausible meltwater scenarios. The Whanganui Basin RSL record approximates eustatic sea level (ESL) in all scenarios when variability is dominated by Antarctic Ice Sheet meltwater source during the mid-Pliocene, but overestimates ESL once Northern Hemisphere ice sheet variability dominates in the late Pliocene.  The RSL record displays 20 kyr precession-paced sea level variability during the MPWP with an average amplitude of ~15 ± 8 m, in-phase with southern high-latitude summer insolation. These are interpreted as ~20 m Antarctic Ice Sheet contributions, offset by ~ 5 m anti-phased Greenland Ice Sheet contribution, in the absence of a significant Northern Hemisphere ice sheets. This interpretation is supported by a previously published ice-proximal precession-paced, ice-berg-rafted debris record recovered off the coast of Wilkes Land. The Whanganui RSL record is not consistent with a dominant 40 kyr pacing observed the benthic oxygen isotope stack at this time. While the deep ocean benthic δ¹⁸O stack is of varying temporal and spatial resolution, during this time interval, the Whanganui RSL record implies a more complex relationship between ice-volume and oxygen isotope composition of sea water (δ¹⁸Oseawater). The relative influences of varying composition of the polar ice sheets, marine versus land based ice, the out-of-phase behaviour of polar ice sheet growth and retreat, and a potential decoupling of ocean bottom water temperature and δ¹⁸Oseawater are explored.  The late Pliocene relative sea level record exhibits increasing ~40 kyr obliquity-paced amplitudes of ~20 ± 8 m. This is interpreted as a response to the expansion of Northern Hemisphere ice sheets after ~2.9 Ma. During this time the Antarctic proximal ice-berg rafted debris records display continuing precession-paced ice-volume fluctuations, but with decreasing amplitude suggesting cooling and stabilisation of the East Antarctic Ice Sheet. With the bipolar glaciation, the ocean δ¹⁸O signal became increasingly dominated by northern hemisphere ice-volume. However, the RSL record implies relatively limited ice-volume contributions (up to ~25 m sea level equivalent) prior to ~2.6 Ma.  The large amplitude contribution of Antarctic Ice Sheets to global sea level during the MPWP has significant implications for the sensitivity of the Antarctica Ice Sheet to global temperatures 2-3°C above preindustrial levels, and atmospheric CO₂ forecast for the coming decades.</p>


2021 ◽  
Author(s):  
◽  
Georgia Grant

<p>The mid- to late Pliocene (3.3-2.6 Ma) spans one of the most significant climatic transitions of the Cenozoic. It is characterised by global cooling from a climate with an atmospheric CO2 concentration of ~400 ppm and temperatures of 2-3°C warmer-than-present, to one marked by the progressive expansion of ice sheets on northern hemisphere. Consequently, the mid-Pliocene warm period (MPWP; 3.3-3.0 Ma) provides the most accessible and recent geological analogue for global sea-level variability relevant to future warming. Global mean sea level has been estimated at 22 ± 10 m above present-day for MPWP. However, recent re-evaluations of this estimate suggest that spatially-varying visco-elastic responses of the crust, local gravitational changes and dynamic topography from mantle processes may preclude ever being able to reconstruct peak Pliocene mean sea level. The Whanganui Basin, New Zealand, contains a ~5 km thick stratigraphic succession of Pliocene-Pleistocene (last 5 Ma), shallow-marine, cyclical sedimentary sequences demonstrated to record orbitally-paced, glacial-interglacial global sea-level fluctuations. A limitation of the Whanganui sea level record, to date, has been an inability to resolve the full amplitude of glacial-interglacial water depth change due to the occurrence of cycle bounding unconformities representing sub-aerial erosion during glacial lowstands.  This thesis analyses a new ~900 m-thick, mid- (3.3-3.0 Ma) to late Pliocene (3.0-2.6 Ma), shallow-marine, cyclical sedimentary succession from a remote and relatively understudied part of Whanganui Basin. Unlike previous studies, these shelf sediments were continuously deposited, and were not eroded during sea-level lowstands, and thus provide the potential to reconstruct the full amplitude of glacial-interglacial sea-level change. On orbital timescales the influence of mantle dynamic processes is minimal. The approach taken applies lithofacies, sequence stratigraphy, and benthic foraminiferal analyses and a novel depth-dependent sediment grain size method to reconstruct the paleowater depths for, two continuously-cored drill holes, which are integrated with studies of outcropping sections. The thesis presents a new record of the amplitude and frequency of orbitally-paced, global sea-level changes from a wave-graded continental shelf, that is independent of the benthic δ¹⁸O proxy record of global ice-volume change.  Paleobathymetric interpretations are underpinned by analysis of extant benthic foraminiferal census data and a statistical correlation with the distribution of modern taxa. In general, water depths derived from foraminiferal modern analogue technique are consistent with variability recorded by lithofacies. The inferred sea-level cycles co-vary with a qualitative climate record reconstructed from a census of extant pollen and spores, and a modern temperature relationship. A high-resolution age model is established using magnetostratigraphy constrained by biostratigraphy, and the dating and correlation of tephra. This integrated chronostratigraphy allows the recognition of 23 individual sedimentary cycles, that are correlated “one-to-one” across the paleo-shelf and are compared to the deep-ocean benthic oxygen isotope (δ ¹⁸O) record.  A grain size-water depth technique was developed to quantify the paleobathymetry with more precision than the relatively insensitive benthic foraminifera approach. The method utilises a water depth threshold relationship between wave-induced near bed velocity and the velocity required to transport sand. The resulting paleobathymetric records of the most sensitive sites, the mid-Pliocene Siberia-1 drill core and the late Pliocene Rangitikei River section, were selected to compile a composite paleobathymetry. A one-dimensional backstripping method was then applied to remove the effects of tectonic subsidence, sediment and water loading on the record, to derive a relative sea level (RSL) curve.  The contribution of glacio-hydro-isostatic (GIA) processes to the RSL record was evaluated using a process-based forward numerical solid Earth model for a range of plausible meltwater scenarios. The Whanganui Basin RSL record approximates eustatic sea level (ESL) in all scenarios when variability is dominated by Antarctic Ice Sheet meltwater source during the mid-Pliocene, but overestimates ESL once Northern Hemisphere ice sheet variability dominates in the late Pliocene.  The RSL record displays 20 kyr precession-paced sea level variability during the MPWP with an average amplitude of ~15 ± 8 m, in-phase with southern high-latitude summer insolation. These are interpreted as ~20 m Antarctic Ice Sheet contributions, offset by ~ 5 m anti-phased Greenland Ice Sheet contribution, in the absence of a significant Northern Hemisphere ice sheets. This interpretation is supported by a previously published ice-proximal precession-paced, ice-berg-rafted debris record recovered off the coast of Wilkes Land. The Whanganui RSL record is not consistent with a dominant 40 kyr pacing observed the benthic oxygen isotope stack at this time. While the deep ocean benthic δ¹⁸O stack is of varying temporal and spatial resolution, during this time interval, the Whanganui RSL record implies a more complex relationship between ice-volume and oxygen isotope composition of sea water (δ¹⁸Oseawater). The relative influences of varying composition of the polar ice sheets, marine versus land based ice, the out-of-phase behaviour of polar ice sheet growth and retreat, and a potential decoupling of ocean bottom water temperature and δ¹⁸Oseawater are explored.  The late Pliocene relative sea level record exhibits increasing ~40 kyr obliquity-paced amplitudes of ~20 ± 8 m. This is interpreted as a response to the expansion of Northern Hemisphere ice sheets after ~2.9 Ma. During this time the Antarctic proximal ice-berg rafted debris records display continuing precession-paced ice-volume fluctuations, but with decreasing amplitude suggesting cooling and stabilisation of the East Antarctic Ice Sheet. With the bipolar glaciation, the ocean δ¹⁸O signal became increasingly dominated by northern hemisphere ice-volume. However, the RSL record implies relatively limited ice-volume contributions (up to ~25 m sea level equivalent) prior to ~2.6 Ma.  The large amplitude contribution of Antarctic Ice Sheets to global sea level during the MPWP has significant implications for the sensitivity of the Antarctica Ice Sheet to global temperatures 2-3°C above preindustrial levels, and atmospheric CO₂ forecast for the coming decades.</p>


2010 ◽  
Vol 51 (55) ◽  
pp. 23-33 ◽  
Author(s):  
B. De Boer ◽  
R.S.W. van de Wal ◽  
R. Bintanja ◽  
L.J. Lourens ◽  
E. Tuenter

AbstractVariations in global ice volume and temperature over the Cenozoic era have been investigated with a set of one-dimensional (1-D) ice-sheet models. Simulations include three ice sheets representing glaciation in the Northern Hemisphere, i.e. in Eurasia, North America and Greenland, and two separate ice sheets for Antarctic glaciation. The continental mean Northern Hemisphere surface-air temperature has been derived through an inverse procedure from observed benthic δ18O records. These data have yielded a mutually consistent and continuous record of temperature, global ice volume and benthic δ18O over the past 35 Ma. The simple 1-D model shows good agreement with a comprehensive 3-D ice-sheet model for the past 3 Ma. On average, differences are only 1.0˚C for temperature and 6.2 m for sea level. Most notably, over the 35 Ma period, the reconstructed ice volume–temperature sensitivity shows a transition from a climate controlled by Southern Hemisphere ice sheets to one controlled by Northern Hemisphere ice sheets. Although the transient behaviour is important, equilibrium experiments show that the relationship between temperature and sea level is linear and symmetric, providing limited evidence for hysteresis. Furthermore, the results show a good comparison with other simulations of Antarctic ice volume and observed sea level.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Stephanie Melchor

A new analysis of long-term satellite records shows the East Antarctic Ice Sheet is unexpectedly dependent on fluctuations in weather. This study may improve models of how much sea levels will rise.


2020 ◽  
Vol 14 (3) ◽  
pp. 833-840 ◽  
Author(s):  
Heiko Goelzer ◽  
Violaine Coulon ◽  
Frank Pattyn ◽  
Bas de Boer ◽  
Roderik van de Wal

Abstract. Estimating the contribution of marine ice sheets to sea-level rise is complicated by ice grounded below sea level that is replaced by ocean water when melted. The common approach is to only consider the ice volume above floatation, defined as the volume of ice to be removed from an ice column to become afloat. With isostatic adjustment of the bedrock and external sea-level forcing that is not a result of mass changes of the ice sheet under consideration, this approach breaks down, because ice volume above floatation can be modified without actual changes in the sea-level contribution. We discuss a consistent and generalised approach for estimating the sea-level contribution from marine ice sheets.


2019 ◽  
Vol 13 (10) ◽  
pp. 2615-2631 ◽  
Author(s):  
Michelle Tigchelaar ◽  
Axel Timmermann ◽  
Tobias Friedrich ◽  
Malte Heinemann ◽  
David Pollard

Abstract. Antarctic ice volume has varied substantially during the late Quaternary, with reconstructions suggesting a glacial ice sheet extending to the continental shelf break and interglacial sea level highstands of several meters. Throughout this period, changes in the Antarctic Ice Sheet were driven by changes in atmospheric and oceanic conditions and global sea level; yet, so far modeling studies have not addressed which of these environmental forcings dominate and how they interact in the dynamical ice sheet response. Here, we force an Antarctic Ice Sheet model with global sea level reconstructions and transient, spatially explicit boundary conditions from a 408 ka climate model simulation, not only in concert with each other but, for the first time, also separately. We find that together these forcings drive glacial–interglacial ice volume changes of 12–14 ms.l.e., in line with reconstructions and previous modeling studies. None of the individual drivers – atmospheric temperature and precipitation, ocean temperatures, or sea level – single-handedly explains the full ice sheet response. In fact, the sum of the individual ice volume changes amounts to less than half of the full ice volume response, indicating the existence of strong nonlinearities and forcing synergy. Both sea level and atmospheric forcing are necessary to create full glacial ice sheet growth, whereas the contribution of ocean melt changes is found to be more a function of ice sheet geometry than climatic change. Our results highlight the importance of accurately representing the relative timing of forcings of past ice sheet simulations and underscore the need for developing coupled climate–ice sheet modeling frameworks that properly capture key feedbacks.


2020 ◽  
Author(s):  
James O'Neill ◽  
Tamsin Edwards ◽  
Lauren Gregoire ◽  
Niall Gandy ◽  
Aisling Dolan ◽  
...  

&lt;p&gt;The Antarctic ice sheet is a deeply uncertain component of future sea level under anthropogenic climate change. To shed light on the ice sheets response to warmer climates in the past and its&amp;#8217; response to future warming, periods in Earth&amp;#8217;s geological record can serve as instructive modelling targets. The mid-Pliocene warm period (3.3 &amp;#8211; 3.0 Ma) is characterised by global mean surface temperatures ~2.7-4&lt;sup&gt;o&lt;/sup&gt;C above pre-industrial, atmospheric CO&lt;sub&gt;2&lt;/sub&gt;&amp;#160;concentrations of ~400ppm&amp;#160;and eustatic sea level rise on the order of ~10-30m above modern. The mid-Pliocene sea level record is subject to large uncertainties. The upper end of this record implies a significant contribution from Antarctica and possible collapse of regions of the ice sheet, driven by marine ice sheet instabilities.&lt;/p&gt;&lt;p&gt;We present a suite of BISICLES ice sheet model&amp;#160;simulations, forced with a subset of Pliocene Modelling Intercomparison Project (PlioMIP phase 1) coupled atmosphere-ocean climate models, that represent the Pliocene Antarctic ice sheet. This ensemble captures a range of possible ice sheet model responses to a warm Pliocene-like climate under different parameter choices, sampled in a Latin hypercube design. Modelled Antarctic sea level contribution is compared to reconstructions of Pliocene sea level, to explore the extent to which available data with large uncertainties can constrain the model parameter values.&lt;/p&gt;&lt;p&gt;Our aim with this work is to provide insights on Antarctic contribution to sea level in the warm mid-Pliocene. We seek to characterise the role of ice-ocean, ice-atmosphere and ice-bedrock parameter uncertainty in BISICLES on the ice sheet sea level contribution range, and whether cliff instability processes are necessary in reproduce high Pliocene sea levels in this ice sheet model.&lt;/p&gt;


2020 ◽  
Author(s):  
Andrew Shepherd ◽  

&lt;p&gt;In recent decades, the Antarctic and Greenland Ice Sheets have been major contributors to global sea-level rise and are expected to be so in the future. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the degree and trajectory of today&amp;#8217;s imbalance remain uncertain. Here we compare and combine 26 individual satellite records of changes in polar ice sheet volume, flow and gravitational potential to produce a reconciled estimate of their mass balance. &lt;strong&gt;Since the early 1990&amp;#8217;s, ice losses from Antarctica and Greenland have caused global sea-levels to rise by 18.4 millimetres, on average, and there has been a sixfold increase in the volume of ice loss over time. Of this total, 41 % (7.6 millimetres) originates from Antarctica and 59 % (10.8 millimetres) is from Greenland. In this presentation, we compare our reconciled estimates of Antarctic and Greenland ice sheet mass change to IPCC projection of sea level rise to assess the model skill in predicting changes in ice dynamics and surface mass balance. &amp;#160;&lt;/strong&gt;Cumulative ice losses from both ice sheets have been close to the IPCC&amp;#8217;s predicted rates for their high-end climate warming scenario, which forecast an additional 170 millimetres of global sea-level rise by 2100 when compared to their central estimate.&lt;/p&gt;


2020 ◽  
Author(s):  
Jim Jordan ◽  
Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
...  

&lt;p&gt;The East Antarctic Ice Sheet (EAIS) is the single largest potential contributor to future global mean sea level rise, containing a water mass equivalent of 53 m. Recent work has found the overall mass balance of the EAIS to be approximately in equilibrium, albeit with large uncertainties. However, changes in oceanic conditions have the potential to upset this balance. This could happen by both a general warming of the ocean and also by shifts in oceanic conditions allowing warmer water masses to intrude into ice shelf cavities.&lt;/p&gt;&lt;p&gt;We use the &amp;#218;a numerical ice-flow model, combined with ocean-melt rates parameterized by the PICO box mode, to predict the future contribution to global-mean sea level of the EAIS. Results are shown for the next 100 years under a range of emission scenarios and oceanic conditions on a region by region basis, as well as for the whole of the EAIS.&amp;#160;&lt;/p&gt;


2010 ◽  
Vol 51 (55) ◽  
pp. 41-48 ◽  
Author(s):  
Fuyuki Saito ◽  
Ayako Abe-Ouchi

AbstractNumerical experiments are performed for the Antarctic ice sheet to study the sensitivity of the ice volume to variations in the area of grounded ice and to changes in the climate during the most recent deglaciation. The effect of the variations in the grounded area is found to be the major source of changes in the ice volume, while the effect of climate change was minor. The maximum possible contribution of the ice-volume change to sea-level rise during the deglaciation is estimated to be 36 m, which covers most values estimated in previous studies. The effect of the advance of the ice-sheet margin over those regions not connected to the major ice shelves contributes one-third of the total ice-volume change, which is comparable to the effect of the grounding of the Filchner–Ronne Ice Shelf and the contribution of the Ross and Amery Ice Shelves together.


Sign in / Sign up

Export Citation Format

Share Document