scholarly journals Structural basis for amino acid exchange by a human heteromeric amino acid transporter

2020 ◽  
Vol 117 (35) ◽  
pp. 21281-21287 ◽  
Author(s):  
Di Wu ◽  
Tamara N. Grund ◽  
Sonja Welsch ◽  
Deryck J. Mills ◽  
Max Michel ◽  
...  

Heteromeric amino acid transporters (HATs) comprise a group of membrane proteins that belong to the solute carrier (SLC) superfamily. They are formed by two different protein components: a light chain subunit from an SLC7 family member and a heavy chain subunit from the SLC3 family. The light chain constitutes the transport subunit whereas the heavy chain mediates trafficking to the plasma membrane and maturation of the functional complex. Mutation, malfunction, and dysregulation of HATs are associated with a wide range of pathologies or represent the direct cause of inherited and acquired disorders. Here we report the cryogenic electron microscopy structure of the neutral and basic amino acid transport complex (b[0,+]AT1-rBAT) which reveals a heterotetrameric protein assembly composed of two heavy and light chain subunits, respectively. The previously uncharacterized interaction between two HAT units is mediated via dimerization of the heavy chain subunits and does not include participation of the light chain subunits. The b(0,+)AT1 transporter adopts a LeuT fold and is captured in an inward-facing conformation. We identify an amino-acid–binding pocket that is formed by transmembrane helices 1, 6, and 10 and conserved among SLC7 transporters.

2020 ◽  
Vol 6 (16) ◽  
pp. eaay6379 ◽  
Author(s):  
Renhong Yan ◽  
Yaning Li ◽  
Yi Shi ◽  
Jiayao Zhou ◽  
Jianlin Lei ◽  
...  

Heteromeric amino acid transporters (HATs) catalyze the transmembrane movement of amino acids, comprising two subunits, a heavy chain and a light chain, linked by a disulfide bridge. The b0,+AT (SLC7A9) is a representative light chain of HATs, forming heterodimer with rBAT, a heavy chain which mediates the membrane trafficking of b0,+AT. The b0,+AT-rBAT complex is an obligatory exchanger, which mediates the influx of cystine and cationic amino acids and the efflux of neutral amino acids in kidney and small intestine. Here, we report the cryo-EM structure of the human b0,+AT-rBAT complex alone and in complex with arginine substrate at resolution of 2.7 and 2.3 Å, respectively. The overall structure of b0,+AT-rBAT exists as a dimer of heterodimer consistent with the previous study. A ligand molecule is bound to the substrate binding pocket, near which an occluded pocket is identified, to which we found that it is important for substrate transport.


2001 ◽  
Vol 281 (4) ◽  
pp. C1077-C1093 ◽  
Author(s):  
Carsten A. Wagner ◽  
Florian Lang ◽  
Stefan Bröer

Heterodimeric amino acid transporters are comprised of two subunits, a polytopic membrane protein (light chain) and an associated type II membrane protein (heavy chain). The heavy chain rbAT (related to b0,+ amino acid transporter) associates with the light chain b0,+AT (b0,+ amino acid transporter) to form the amino acid transport system b0,+, whereas the homologous heavy chain 4F2hc interacts with several light chains to form system L (with LAT1 and LAT2), system y+L (with y+LAT1 and y+LAT2), system x[Formula: see text](with xAT), or system asc (with asc1). The association of light chains with the two heavy chains is not unambiguous. rbAT may interact with LAT2 and y+LAT1 and vice versa; 4F2hc may interact with b0,+AT when overexpressed. 4F2hc is necessary for trafficking of the light chain to the plasma membrane, whereas the light chains are thought to determine the transport characteristics of the respective heterodimer. In contrast to 4F2hc, mutations in rbAT suggest that rbAT itself takes part in the transport besides serving for the trafficking of the light chain to the cell surface. Heavy and light subunits are linked together by a disulfide bridge. The disulfide bridge, however, is not necessary for the trafficking of rbAT or 4F2 heterodimers to the membrane or for the functioning of the transporter. However, there is experimental evidence that the disulfide bridge in the 4F2hc/LAT1 heterodimer plays a role in the regulation of a cation channel. These results highlight complex interactions between the different subunits of heterodimeric amino acid transporters and suggest that despite high grades of homology, the interactions between rbAT and 4F2hc and their respective partners may be different.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yoshikatsu Kanai

The SLC3 and SLC7 families combine to generate functional transporters, where the subunit composition is a disulphide-linked combination of a heavy chain (SLC3 family) with a light chain (SLC7 family) [1].


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Yoshikatsu Kanai

The SLC3 and SLC7 families combine to generate functional transporters, where the subunit composition is a disulphide-linked combination of a heavy chain (SLC3 family) with a light chain (SLC7 family).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Renhong Yan ◽  
Yaning Li ◽  
Jennifer Müller ◽  
Yuanyuan Zhang ◽  
Simon Singer ◽  
...  

AbstractLAT1 (SLC7A5) is one of the representative light chain proteins of heteromeric amino acid transporters, forming a heterodimer with its heavy chain partner 4F2hc (SLC3A2). LAT1 is overexpressed in many types of tumors and mediates the transfer of drugs and hormones across the blood-brain barrier. Thus, LAT1 is considered as a drug target for cancer treatment and may be exploited for drug delivery into the brain. Here, we synthesized three potent inhibitors of human LAT1, which inhibit transport of leucine with IC50 values between 100 and 250 nM, and solved the cryo-EM structures of the corresponding LAT1-4F2hc complexes with these inhibitors bound at resolution of up to 2.7 or 2.8 Å. The protein assumes an outward-facing occluded conformation, with the inhibitors bound in the classical substrate binding pocket, but with their tails wedged between the substrate binding site and TM10 of LAT1. We also solved the complex structure of LAT1-4F2hc with 3,5-diiodo-l-tyrosine (Diiodo-Tyr) at 3.4 Å overall resolution, which revealed a different inhibition mechanism and might represent an intermediate conformation between the outward-facing occluded state mentioned above and the outward-open state. To our knowledge, this is the first time that the outward-facing conformation is revealed for the HAT family. Our results unveil more important insights into the working mechanisms of HATs and provide a structural basis for future drug design.


1987 ◽  
Vol 247 (1) ◽  
pp. 15-21 ◽  
Author(s):  
J Kellermann ◽  
C Thelen ◽  
F Lottspeich ◽  
A Henschen ◽  
R Vogel ◽  
...  

The arrangement of the disulphide bridges in human low-Mr kininogen has been elucidated. Low-Mr kininogen contains 18 half-cystine residues forming nine disulphide bridges. The first and the last half-cystine residues of the amino acid sequence form a disulphide loop which spans the heavy- and the light-chain portion of the kininogen molecule. The other 16 half-cystine residues are linked consecutively to form eight loops of 4-20 amino acids; these loops are lined up in the heavy-chain portion of the kininogen molecule. In this way, a particular pattern of disulphide loops is formed which seems to be of critical importance for the inhibitor function of human kininogen.


1995 ◽  
Vol 7 (6) ◽  
pp. 1491
Author(s):  
RB Krishna ◽  
J Dancis ◽  
M Levitz

Human placental chorionic villi were incubated for 30 min with [3H]lysine or [3H]arginine and the distribution ratios (intracellular:extracellular concentrations) were determined. The ratios remained unchanged when Na+ in Earle's buffered salt solution was replaced with Li+. When Na+ was replaced with choline there was a significant increase is distribution ratios (lysine 1.34 +/- 0.33 v. 3.99 +/- 0.15, arginine 1.95 +/- 0.37 v. 5.05 +/- 1.16). Leucine, a neutral amino acid with a Na(+)-independent transport system, was unaffected by choline substitution. The distribution ratio for alanine, which is Na(+)-dependent, was reduced (2.50 +/- 0.41 v. 1.45 +/- 0.20). Two other quarternary amines, acetyl-beta-methylcholine and tetraethylammonium chloride (TEA) caused similar increases in the distribution ratios of the basic amino acids. Hordenine, a tertiary amine, was less effective and there was little or no effect with ephedrine, a secondary amine. The choline effect was first observable at concentrations of 105 mM. With TEA, there was a progressive increase in distribution ratios beginning at 29 mM. Lysine efflux was measured after incubation of villi with lysine in Earle's buffer or choline buffer. Lysine was rapidly released to the fresh medium with 25% more retained in choline-exposed villi. The amines may cause alterations in the kinetics of basic amino-acid transporters or may modify other aspects of placental physiology permitting an increase retention of the basic amino acids.


2007 ◽  
Vol 81 (20) ◽  
pp. 11489-11498 ◽  
Author(s):  
Dongxiang Liu ◽  
Navid Madani ◽  
Ying Li ◽  
Rong Cao ◽  
Won-Tak Choi ◽  
...  

ABSTRACT Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel d-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural d-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This d-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this d-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of d-amino acid-containing chemokines.


2018 ◽  
Author(s):  
Bryn C. Taylor ◽  
Christopher T. Lee ◽  
Rommie E. Amaro

AbstractCC Chemokine Receptor 2 (CCR2) is a part of the chemokine receptor family, an important class of therapeutic targets. These class A G-protein coupled receptors (GPCRs) are involved in mammalian signaling pathways and control cell migration toward endogenous CC chemokine ligands. Chemokine receptors and their associated ligands are involved in a wide range of diseases and thus have become important drug targets. Of particular interest is CCR2, which has been implicated in cancer, autoimmunity driven type-1 diabetes, diabetic nephropathy, multiple sclerosis, asthma, atherosclerosis, neuropathic pain, and rheumatoid arthritis. Although promising, CCR2 antagonists have been largely unsuccessful to date. Here, we investigate the effect of an orthosteric and an allosteric antagonist on CCR2 dynamics by coupling long timescale molecular dynamics simulations with Markov-state model theory. We find that the antagonists shift CCR2 into several stable inactive conformations that are distinct from the crystal structure conformation, and that they disrupt a continuous internal water and sodium ion pathway preventing transitions to an active-like state. Several of these stable conformations contain a putative drug binding pocket that may be amenable to targeting with another small molecule antagonist. In the absence of antagonists, the apo dynamics reveal intermediate conformations along the activation pathway that provide insight into the basal dynamics of CCR2, and may also be useful for future drug design.


Sign in / Sign up

Export Citation Format

Share Document