scholarly journals Self-shaping liquid crystal droplets by balancing bulk elasticity and interfacial tension

2021 ◽  
Vol 118 (14) ◽  
pp. e2011174118
Author(s):  
Karthik Peddireddy ◽  
Simon Čopar ◽  
Khoa V. Le ◽  
Igor Muševič ◽  
Christian Bahr ◽  
...  

The shape diversity and controlled reconfigurability of closed surfaces and filamentous structures, universally found in cellular colonies and living tissues, are challenging to reproduce. Here, we demonstrate a method for the self-shaping of liquid crystal (LC) droplets into anisotropic and three-dimensional superstructures, such as LC fibers, LC helices, and differently shaped LC vesicles. The method is based on two surfactants: one dissolved in the LC dispersed phase and the other in the aqueous continuous phase. We use thermal stimuli to tune the bulk LC elasticity and interfacial energy, thereby transforming an emulsion of polydispersed, spherical nematic droplets into numerous, uniform-diameter fibers with multiple branches and vice versa. Furthermore, when the nematic LC is cooled to the smectic-A LC phase, we produce monodispersed microdroplets with a tunable diameter dictated by the cooling rate. Utilizing this temperature-controlled self-shaping of LCs, we demonstrate life-like smectic LC vesicle structures analogous to the biomembranes in living systems. Our experimental findings are supported by a theoretical model of equilibrium interface shapes. The shape transformation is induced by negative interfacial energy, which promotes a spontaneous increase of the interfacial area at a fixed LC volume. The method was successfully applied to many different LC materials and phases, demonstrating a universal mechanism for shape transformation in complex fluids.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Majid Panahi ◽  
Ramin Jamali ◽  
Vahideh Farzam Rad ◽  
Mojtaba Khorasani ◽  
Ahamd Darudi ◽  
...  

AbstractIn several phenomena in biology and industry, it is required to understand the comprehensive behavior of sedimenting micro-particles in fluids. Here, we use the numerical refocusing feature of digital holographic microscopy (DHM) to investigate the slippage effect on micro-particle sedimentation near a flat wall. DHM provides quantitative phase contrast and three-dimensional (3D) imaging in arbitrary time scales, which suggests it as an elegant approach to investigate various phenomena, including dynamic behavior of colloids. 3D information is obtained by post-processing of the recorded digital holograms. Through analysis of 3D trajectories and velocities of multiple sedimenting micro-particles, we show that proximity to flat walls of higher slip lengths causes faster sedimentation. The effect depends on the ratio of the particle size to (1) the slip length and (2) its distance to the wall. We corroborate our experimental findings by a theoretical model which considers both the proximity and the particle interaction to a wall of different hydrophobicity in the hydrodynamic forces.


Author(s):  
Yanxi Song ◽  
Jinliang Xu

We study the production and motion of monodisperse double emulsions in microfluidics comprising series co-flow capillaries. Both two and three dimensional simulations are performed. Flow was determined by dimensionless parameters, i.e., Reynolds number and Weber number of continuous and dispersed phases. The co-flow generated droplets are sensitive to the Reynolds number and Weber number of the continuous phase, but insensitive to those of the disperse phase. Because the inner and outer drops are generate by separate co-flow processes, sizes of both inner and outer drops can be controlled by adjusting Re and We for the continuous phase. Meanwhile, the disperse phase has little effect on drop size, thus a desirable generation frequency of inner drop can be reached by merely adjusting flow rate of the inner fluid, leading to desirable number of inner drops encapsulated by the outer drop. Thus highly monodisperse double emulsions are obtained. It was found that only in dripping mode can droplet be of high mono-dispersity. Flow begins to transit from dripping regime to jetting regime when the Re number is decreased or Weber number is increased. To ensure that all the droplets are produced over a wide range of running parameters, tiny tapered tip outlet for the disperse flow should be applied. Smaller the tapered tip, wider range for Re and we can apply.


Author(s):  
Luca Guzzardi ◽  
Epifanio G Virga

We propose three integral criteria that must be satisfied by all closed surfaces with constant mean curvature immersed in the three-dimensional Euclidean space. These criteria are integral identities that follow from requiring the second variation of the area functional to be invariant under rigid displacements. We obtain from them a new proof of the old result by Delaunay, to the effect that the sphere is the only closed axis-symmetric surface.


2010 ◽  
Vol 97-101 ◽  
pp. 3769-3772 ◽  
Author(s):  
Chang Sheng Zhu ◽  
Jun Wei Wang

Based on a thin interface limit 3D phase-field model by coupled the anisotropy of interfacial energy and self-designed AADCR to improve on the computational methods for solving phase-field, 3D dendritic growth in pure undercooled melt is implemented successfully. The simulation authentically recreated the 3D dendritic morphological fromation, and receives the dendritic growth rule being consistent with crystallization mechanism. An example indicates that AADCR can decreased 70% computational time compared with not using algorithms for a 3D domain of size 300×300×300 grids, at the same time, the accelerated algorithms’ computed precision is higher and the redundancy is small, therefore, the accelerated method is really an effective method.


2004 ◽  
Author(s):  
Aneta Michalkiewicz ◽  
Malgorzata Kujawinska ◽  
Tomasz Kozacki ◽  
Xinghua Wang ◽  
Philip J. Bos

Sign in / Sign up

Export Citation Format

Share Document