disperse flow
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1434
Author(s):  
Lina Miethke ◽  
Paul Prziwara ◽  
Jan Henrik Finke ◽  
Sandra Breitung-Faes

Applying additives and excipients during the dry processing of fine particles is a common measure to control the particle–particle interactions, to specifically influence the powder properties and to enhance the process efficiency or product quality. In this study, the impacts of a particulate lubricant, a nano-disperse flow additive and liquid grinding aids on the dry fine milling and subsequent tableting of the ground material were investigated for three different organic model compounds. It is presented that the three additive classes cause varying and partly opposing effects during these process steps. Especially the lubricant and the grinding aids were shown to increase the efficiency of the milling process as well as the product fineness of the ground material, and to avoid critical product adhesions on the machine surfaces. Thereby, stable and efficient grinding conditions were partially not possible without the addition of such additives. However, as these positive effects are attributed to a reduction of the adhesive forces between the particles, much lower tablet strengths were achieved for these additives. This propagation of powder, and in turn, final product properties over whole process chains, has not been studied in detail so far. It was further revealed that the material behavior and the microstructure of the product particles is decisive for the processing as well, which is why additive effects may be product-specific and can even be suppressed under certain processing conditions. In comparison to the process performances, the powder properties and surface energies of the product particles were less influenced by the additives. On the contrary, particle-based morphologies or deformation behavior seem to play a major role in comparison to inorganic materials. Thus, it can be stated that global bulk properties and surface energies provide first indications of powder behavior and susceptibility. However, additional specific properties need to be evaluated to more clearly understand the influences of additives.


2017 ◽  
Vol 4 (3(36)) ◽  
pp. 14-21
Author(s):  
Valery Shaporev ◽  
Inna Pitak ◽  
Oleg Pitak ◽  
Serhii Briankin

2017 ◽  
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Mikhail S. Boyarkin

2015 ◽  
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Tamara V. Karpukhina ◽  
Ekaterina V. Tsvetova

SPE Journal ◽  
2013 ◽  
Vol 19 (03) ◽  
pp. 390-397 ◽  
Author(s):  
M.. Prats ◽  
R.. Raghavan

Summary Two well tests are described that are aimed at the in-situ determination of the flow capacity (permeability-thickness product) of a natural fracture and the flow resistance of its skins at the boundaries with the reservoir matrix. Fracture skins tend to disperse flow, thus affecting the distribution of tracers in reservoir tests and contaminants and trace elements in aquifers. We are unaware of any other analytical procedure aimed at obtaining the properties of a natural fracture and its skins from subsurface measurements. Neither well test has been implemented. The well tests are modeled after previously reported analytical expressions for the transient pressure distributions in a three-region composite reservoir in a uniform-thickness reservoir in which (1) the natural fracture is represented by a thin middle region of relatively high permeability, (2) the pressure disturbance is caused by producing from a short interval in one of the outer regions, and (3) the response is measured relatively near the fracture. The source and sensor may be on the same side or on opposite sides of the fracture, distinguishing the two tests. Visualizing special completions in a horizontal well intersecting a natural fracture normally, pressure responses are given for both tests for a wide range of fracture/matrix permeability ratios and skin flow resistances for a source 190 ft from the fracture and 10 ft from the sensor and on either side of the fracture, both at the midplane of the reservoir. A simple graphical procedure, not intended to replace history matching or regression where field data are available, illustrates how the two unknowns—permeability-thickness product of a natural fracture and the flow resistance of its skins—may be estimated from two representative values of an assumed measured pressure response.


Sign in / Sign up

Export Citation Format

Share Document