scholarly journals A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird

2020 ◽  
Vol 117 (35) ◽  
pp. 21673-21680 ◽  
Author(s):  
Jennifer R. Merritt ◽  
Kathleen E. Grogan ◽  
Wendy M. Zinzow-Kramer ◽  
Dan Sun ◽  
Eric A. Ortlund ◽  
...  

Behavioral evolution relies on genetic changes, yet few behaviors can be traced to specific genetic sequences in vertebrates. Here we provide experimental evidence showing that differentiation of a single gene has contributed to the evolution of divergent behavioral phenotypes in the white-throated sparrow, a common backyard songbird. In this species, a series of chromosomal inversions has formed a supergene that segregates with an aggressive phenotype. The supergene has capturedESR1, the gene that encodes estrogen receptor α (ERα); as a result, this gene is accumulating changes that now distinguish the supergene allele from the standard allele. Our results show that in birds of the more aggressive phenotype, ERα knockdown caused a phenotypic change to that of the less aggressive phenotype. We next showed that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Finally, we identifiedcis-regulatory features, both genetic and epigenetic, that explain the allelic imbalance. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.

Author(s):  
Jennifer R. Merritt ◽  
Kathleen E. Grogan ◽  
Wendy M. Zinzow-Kramer ◽  
Dan Sun ◽  
Eric A. Ortlund ◽  
...  

AbstractBehavioral evolution relies on genetic changes, yet few social behaviors can be traced to specific genetic sequences in vertebrates. Here, we show experimental evidence that differentiation of a single gene has contributed to divergent behavioral phenotypes in the white-throated sparrow, a common North American songbird. In this species, one of two alleles of ESR1, encoding estrogen receptor α (ERα), has been captured inside a differentiating supergene that segregates with an aggressive phenotype, such that ESR1 expression predicts aggression. Here, we show that the aggressive phenotype associated with the supergene is prevented by ESR1 knockdown in a single brain region. Next, we show that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Cis-regulatory variation between the two alleles affects transcription factor binding sites, DNA methylation, and rates of transcription. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.


2004 ◽  
Vol 171 (4S) ◽  
pp. 348-348
Author(s):  
Ellen Shapiro ◽  
Hongying Huang ◽  
Rachael R. Mash ◽  
Eliza Ng ◽  
Deborah E. McFadden ◽  
...  

2018 ◽  
Vol 239 (3) ◽  
pp. 303-312 ◽  
Author(s):  
H H Farman ◽  
K L Gustafsson ◽  
P Henning ◽  
L Grahnemo ◽  
V Lionikaite ◽  
...  

The importance of estrogen receptor α (ERα) for the regulation of bone mass in males is well established. ERα mediates estrogenic effects both via nuclear and membrane-initiated ERα (mERα) signaling. The role of mERα signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERα signaling, we have used mice (Nuclear-Only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ERα to the plasma membrane. Gonadal-intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to WT littermates at 3, 6 and 9 months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution microcomputed tomography (µCT) analysis of tibia in 3-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mERα is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document