scholarly journals Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation

2021 ◽  
Vol 118 (9) ◽  
pp. e2019555118
Author(s):  
Shriya S. Srinivasan ◽  
Samantha Gutierrez-Arango ◽  
Ashley Chia-En Teng ◽  
Erica Israel ◽  
Hyungeun Song ◽  
...  

Despite advancements in prosthetic technologies, patients with amputation today suffer great diminution in mobility and quality of life. We have developed a modified below-knee amputation (BKA) procedure that incorporates agonist–antagonist myoneural interfaces (AMIs), which surgically preserve and couple agonist–antagonist muscle pairs for the subtalar and ankle joints. AMIs are designed to restore physiological neuromuscular dynamics, enable bidirectional neural signaling, and offer greater neuroprosthetic controllability compared to traditional amputation techniques. In this prospective, nonrandomized, unmasked study design, 15 subjects with AMI below-knee amputation (AB) were matched with 7 subjects who underwent a traditional below-knee amputation (TB). AB subjects demonstrated significantly greater control of their residual limb musculature, production of more differentiable efferent control signals, and greater precision of movement compared to TB subjects (P < 0.008). This may be due to the presence of greater proprioceptive inputs facilitated by the significantly higher fascicle strains resulting from coordinated muscle excursion in AB subjects (P < 0.05). AB subjects reported significantly greater phantom range of motion postamputation (AB: 12.47 ± 2.41, TB: 10.14 ± 1.45 degrees) when compared to TB subjects (P < 0.05). Furthermore, AB subjects also reported less pain (12.25 ± 5.37) than TB subjects (17.29 ± 10.22) and a significant reduction when compared to their preoperative baseline (P < 0.05). Compared with traditional amputation, the construction of AMIs during amputation confers the benefits of enhanced physiological neuromuscular dynamics, proprioception, and phantom limb perception. Subjects’ activation of the AMIs produces more differentiable electromyography (EMG) for myoelectric prosthesis control and demonstrates more positive clinical outcomes.

2005 ◽  
Vol 21 (07) ◽  
Author(s):  
Hakim Said ◽  
Todd Kuiken ◽  
Robert Lipzchutz ◽  
Laura Miller ◽  
Gregory Dumanian

2012 ◽  
Vol 6 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Michael R Dawson ◽  
Farbod Fahimi ◽  
Jason P Carey

The objective of above-elbow myoelectric prostheses is to reestablish the functionality of missing limbs and increase the quality of life of amputees. By using electromyography (EMG) electrodes attached to the surface of the skin, amputees are able to control motors in myoelectric prostheses by voluntarily contracting the muscles of their residual limb. This work describes the development of an inexpensive myoelectric training tool (MTT) designed to help upper limb amputees learn how to use myoelectric technology in advance of receiving their actual myoelectric prosthesis. The training tool consists of a physical and simulated robotic arm, signal acquisition hardware, controller software, and a graphical user interface. The MTT improves over earlier training systems by allowing a targeted muscle reinnervation (TMR) patient to control up to two degrees of freedom simultaneously. The training tool has also been designed to function as a research prototype for novel myoelectric controllers. A preliminary experiment was performed in order to evaluate the effectiveness of the MTT as a learning tool and to identify any issues with the system. Five able-bodied participants performed a motor-learning task using the EMG controlled robotic arm with the goal of moving five balls from one box to another as quickly as possible. The results indicate that the subjects improved their skill in myoelectric control over the course of the trials. A usability survey was administered to the subjects after their trials. Results from the survey showed that the shoulder degree of freedom was the most difficult to control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric J. Earley ◽  
Reva E. Johnson ◽  
Jonathon W. Sensinger ◽  
Levi J. Hargrove

AbstractAccurate control of human limbs involves both feedforward and feedback signals. For prosthetic arms, feedforward control is commonly accomplished by recording myoelectric signals from the residual limb to predict the user’s intent, but augmented feedback signals are not explicitly provided in commercial devices. Previous studies have demonstrated inconsistent results when artificial feedback was provided in the presence of vision; some studies showed benefits, while others did not. We hypothesized that negligible benefits in past studies may have been due to artificial feedback with low precision compared to vision, which results in heavy reliance on vision during reaching tasks. Furthermore, we anticipated more reliable benefits from artificial feedback when providing information that vision estimates with high uncertainty (e.g. joint speed). In this study, we test an artificial sensory feedback system providing joint speed information and how it impacts performance and adaptation during a hybrid positional-and-myoelectric ballistic reaching task. We found that overall reaching errors were reduced after perturbed control, but did not significantly improve steady-state reaches. Furthermore, we found that feedback about the joint speed of the myoelectric prosthesis control improved the adaptation rate of biological limb movements, which may have resulted from high prosthesis control noise and strategic overreaching with the positional control and underreaching with the myoelectric control. These results provide insights into the relevant factors influencing the improvements conferred by artificial sensory feedback.


2007 ◽  
Vol 28 (4) ◽  
pp. 397-413 ◽  
Author(s):  
Ping Zhou ◽  
Blair Lock ◽  
Todd A Kuiken

Author(s):  
Cemile S. Polat ◽  
Hatice E. Konak ◽  
Elif U. Altas ◽  
Meltem G. Akıncı ◽  
Sule S. Onat

2017 ◽  
Vol 5 (1) ◽  
pp. e3 ◽  
Author(s):  
Cosima Prahm ◽  
Ivan Vujaklija ◽  
Fares Kayali ◽  
Peter Purgathofer ◽  
Oskar C Aszmann

2004 ◽  
Vol 28 (3) ◽  
pp. 245-253 ◽  
Author(s):  
T. A. Kuiken ◽  
G. A. Dumanian ◽  
R. D. Lipschutz ◽  
L. A. Miller ◽  
K. A. Stubblefield

A novel method for the control of a myoelectric upper limb prosthesis was achieved in a patient with bilateral amputations at the shoulder disarticulation level. Four independently controlled nerve-muscle units were created by surgically anastomosing residual brachial plexus nerves to dissected and divided aspects of the pectoralis major and minor muscles. The musculocutaneous nerve was anastomosed to the upper pectoralis major; the median nerve was transferred to the middle pectoralis major region; the radial nerve was anastomosed to the lower pectoralis major region; and the ulnar nerve was transferred to the pectoralis minor muscle which was moved out to the lateral chest wall. After five months, three nerve-muscle units were successful (the musculocutaneous, median and radial nerves) in that a contraction could be seen, felt and a surface electromyogram (EMG) could be recorded. Sensory reinnervation also occurred on the chest in an area where the subcutaneous fat was removed. The patient was fitted with a new myoelectric prosthesis using the targeted muscle reinnervation. The patient could simultaneously control two degrees-of-freedom with the experimental prosthesis, the elbow and either the terminal device or wrist. Objective testing showed a doubling of blocks moved with a box and blocks test and a 26% increase in speed with a clothes pin moving test. Subjectively the patient clearly preferred the new prosthesis. He reported that it was easier and faster to use, and felt more natural.


2020 ◽  
Vol 13 (5) ◽  
pp. e234433
Author(s):  
Maheswaran Archunan ◽  
Sriram Srinivasan

Limb amputations are carried out for a number of reasons, which include trauma, vascular disorders, infection, oncology and congenital abnormalities. These patients can develop multiple complications postoperatively with phantom limb pain being a well-recognised issue. That being said, phantom radiculopathy is far less encountered and can therefore be easily overlooked. There are limited cases described in literature and as a result pathophysiology is poorly understood. In this report, we present a patient who had developed phantom radiculopathy decades after his left above knee amputation surgery, which was performed after a road traffic accident. However, we were successfully able to treat the patient with foraminal epidural corticosteroid injection.


Sign in / Sign up

Export Citation Format

Share Document