The Development of a Myoelectric Training Tool for Above-Elbow Amputees

2012 ◽  
Vol 6 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Michael R Dawson ◽  
Farbod Fahimi ◽  
Jason P Carey

The objective of above-elbow myoelectric prostheses is to reestablish the functionality of missing limbs and increase the quality of life of amputees. By using electromyography (EMG) electrodes attached to the surface of the skin, amputees are able to control motors in myoelectric prostheses by voluntarily contracting the muscles of their residual limb. This work describes the development of an inexpensive myoelectric training tool (MTT) designed to help upper limb amputees learn how to use myoelectric technology in advance of receiving their actual myoelectric prosthesis. The training tool consists of a physical and simulated robotic arm, signal acquisition hardware, controller software, and a graphical user interface. The MTT improves over earlier training systems by allowing a targeted muscle reinnervation (TMR) patient to control up to two degrees of freedom simultaneously. The training tool has also been designed to function as a research prototype for novel myoelectric controllers. A preliminary experiment was performed in order to evaluate the effectiveness of the MTT as a learning tool and to identify any issues with the system. Five able-bodied participants performed a motor-learning task using the EMG controlled robotic arm with the goal of moving five balls from one box to another as quickly as possible. The results indicate that the subjects improved their skill in myoelectric control over the course of the trials. A usability survey was administered to the subjects after their trials. Results from the survey showed that the shoulder degree of freedom was the most difficult to control.

2004 ◽  
Vol 28 (3) ◽  
pp. 245-253 ◽  
Author(s):  
T. A. Kuiken ◽  
G. A. Dumanian ◽  
R. D. Lipschutz ◽  
L. A. Miller ◽  
K. A. Stubblefield

A novel method for the control of a myoelectric upper limb prosthesis was achieved in a patient with bilateral amputations at the shoulder disarticulation level. Four independently controlled nerve-muscle units were created by surgically anastomosing residual brachial plexus nerves to dissected and divided aspects of the pectoralis major and minor muscles. The musculocutaneous nerve was anastomosed to the upper pectoralis major; the median nerve was transferred to the middle pectoralis major region; the radial nerve was anastomosed to the lower pectoralis major region; and the ulnar nerve was transferred to the pectoralis minor muscle which was moved out to the lateral chest wall. After five months, three nerve-muscle units were successful (the musculocutaneous, median and radial nerves) in that a contraction could be seen, felt and a surface electromyogram (EMG) could be recorded. Sensory reinnervation also occurred on the chest in an area where the subcutaneous fat was removed. The patient was fitted with a new myoelectric prosthesis using the targeted muscle reinnervation. The patient could simultaneously control two degrees-of-freedom with the experimental prosthesis, the elbow and either the terminal device or wrist. Objective testing showed a doubling of blocks moved with a box and blocks test and a 26% increase in speed with a clothes pin moving test. Subjectively the patient clearly preferred the new prosthesis. He reported that it was easier and faster to use, and felt more natural.


2007 ◽  
Vol 98 (5) ◽  
pp. 2974-2982 ◽  
Author(s):  
Ping Zhou ◽  
Madeleine M. Lowery ◽  
Kevin B. Englehart ◽  
He Huang ◽  
Guanglin Li ◽  
...  

An analysis of the motor control information content made available with a neural–machine interface (NMI) in four subjects is presented in this study. We have developed a novel NMI–called targeted muscle reinnervation (TMR)—to improve the function of artificial arms for amputees. TMR involves transferring the residual amputated nerves to nonfunctional muscles in amputees. The reinnervated muscles act as biological amplifiers of motor commands in the amputated nerves and the surface electromyogram (EMG) can be used to enhance control of a robotic arm. Although initial clinical success with TMR has been promising, the number of degrees of freedom of the robotic arm that can be controlled has been limited by the number of reinnervated muscle sites. In this study we assess how much control information can be extracted from reinnervated muscles using high-density surface EMG electrode arrays to record surface EMG signals over the reinnervated muscles. We then applied pattern classification techniques to the surface EMG signals. High accuracy was achieved in the classification of 16 intended arm, hand, and finger/thumb movements. Preliminary analyses of the required number of EMG channels and computational demands demonstrate clinical feasibility of these methods. This study indicates that TMR combined with pattern-recognition techniques has the potential to further improve the function of prosthetic limbs. In addition, the results demonstrate that the central motor control system is capable of eliciting complex efferent commands for a missing limb, in the absence of peripheral feedback and without retraining of the pathways involved.


2002 ◽  
Vol 61 (3) ◽  
pp. 139-151 ◽  
Author(s):  
Céline Darnon ◽  
Céline Buchs ◽  
Fabrizio Butera

When interacting on a learning task, which is typical of several academic situations, individuals may experience two different motives: Understanding the problem, or showing their competences. When a conflict (confrontation of divergent propositions) emerges from this interaction, it can be solved either in an epistemic way (focused on the task) or in a relational way (focused on the social comparison of competences). The latter is believed to be detrimental for learning. Moreover, research on cooperative learning shows that when they share identical information, partners are led to compare to each other, and are less encouraged to cooperate than when they share complementary information. An epistemic vs. relational conflict vs. no conflict was provoked in dyads composed by a participant and a confederate, working either on identical or on complementary information (N = 122). Results showed that, if relational and epistemic conflicts both entailed more perceived interactions and divergence than the control group, only relational conflict entailed more perceived comparison activities and a less positive relationship than the control group. Epistemic conflict resulted in a more positive perceived relationship than the control group. As far as performance is concerned, relational conflict led to a worse learning than epistemic conflict, and - after a delay - than the control group. An interaction between the two variables on delayed performance showed that epistemic and relational conflicts were different only when working with complementary information. This study shows the importance of the quality of relationship when sharing information during cooperative learning, a crucial factor to be taken into account when planning educational settings at the university.


Author(s):  
Yudong Qiu ◽  
Daniel Smith ◽  
Chaya Stern ◽  
mudong feng ◽  
Lee-Ping Wang

<div>The parameterization of torsional / dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields.</div><div>Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms.</div><div>To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values.</div><div>However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses.</div><div>In this paper we propose a systematic and versatile workflow called \textit{TorsionDrive} to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development.</div><div>The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described.</div><div>The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</div>


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammed Obaid ◽  
Qianwei Zhang ◽  
Scott J. Adams ◽  
Reza Fotouhi ◽  
Haron Obaid

Abstract Background Telesonography systems have been developed to overcome barriers to accessing diagnostic ultrasound for patients in rural and remote communities. However, most previous telesonography systems have been designed for performing only abdominal and obstetrical exams. In this paper, we describe the development and assessment of a musculoskeletal (MSK) telesonography system. Methods We developed a 4-degrees-of-freedom (DOF) robot to manipulate an ultrasound probe. The robot was remotely controlled by a radiologist operating a joystick at the master site. The telesonography system was used to scan participants’ forearms, and all participants were conventionally scanned for comparison. Participants and radiologists were surveyed regarding their experience. Images from both scanning methods were independently assessed by an MSK radiologist. Results All ten ultrasound exams were successfully performed using our developed MSK telesonography system, with no significant delay in movement. The duration (mean ± standard deviation) of telerobotic and conventional exams was 4.6 ± 0.9 and 1.4 ± 0.5 min, respectively (p = 0.039). An MSK radiologist rated quality of real-time ultrasound images transmitted over an internet connection as “very good” for all telesonography exams, and participants rated communication with the radiologist as “very good” or “good” for all exams. Visualisation of anatomic structures was similar between telerobotic and conventional methods, with no statistically significant differences. Conclusions The MSK telesonography system developed in this study is feasible for performing soft tissue ultrasound exams. The advancement of this system may allow MSK ultrasound exams to be performed over long distances, increasing access to ultrasound for patients in rural and remote communities.


2021 ◽  
Author(s):  
Asif Arefeen ◽  
Yujiang Xiang

Abstract In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1196 ◽  
Author(s):  
Seulah Lee ◽  
Babar Jamil ◽  
Sunhong Kim ◽  
Youngjin Choi

Myoelectric prostheses assist users to live their daily lives. However, the majority of users are primarily confined to forearm amputees because the surface electromyography (sEMG) that understands the motion intents should be acquired from a residual limb for control of the myoelectric prosthesis. This study proposes a novel fabric vest socket that includes embroidered electrodes suitable for a high-level upper amputee, especially for shoulder disarticulation. The fabric vest socket consists of rigid support and a fabric vest with embroidered electrodes. Several experiments were conducted to verify the practicality of the developed vest socket with embroidered electrodes. The sEMG signals were measured using commercial Ag/AgCl electrodes for a comparison to verify the performance of the embroidered electrodes in terms of signal amplitudes, the skin-electrode impedance, and signal-to-noise ratio (SNR). These results showed that the embroidered electrodes were as effective as the commercial electrodes. Then, posture classification was carried out by able-bodied subjects for the usability of the developed vest socket. The average classification accuracy for each subject reached 97.92%, and for all the subjects it was 93.2%. In other words, the fabric vest socket with the embroidered electrodes could measure sEMG signals with high accuracy. Therefore, it is expected that it can be readily worn by high-level amputees to control their myoelectric prostheses, as well as it is cost effective for fabrication as compared with the traditional socket.


Author(s):  
Pankaj SHARMA ◽  
Vinod KUMAR

Passenger comfort, quality of ride, and handling have broughta lot of attention and concern toautomotive design engineers. These 2 parameters must have optimum balance as they have an inverse effect on each other. Researchers have proposed several approaches and techniques like PID control, fuzzy approach, GA, techniques with inspiration from nature and hybrid techniques to attain the same. A new controller based on the learning behavior of the human brain has been used for the control of semi-active suspension in this study. The controller is known as the Brain Emotional Learning-Based Intelligent Controller (BELBIC). A one-fourth model of car along with the driver model having 6 degrees of freedom (DOF) wasmodeled and simulated. The objective of the studywasto analyze the performance of the proposed controller for improving the dynamic response of the vehicle model coupled with complex biodynamic models of the human body as a passenger, making the whole dynamic system very complex to control. The performance wasanalyzed based on percentage reduction in the overshoot of the vehicle’s sprung mass as well as different human body parts when subjected to road disturbances. The proposed controller performance wascompared with the PID controller, widely used in semi-active suspension. The simulation results obtained for BELBIC controlled system for circular road bump showed that the overshoot of passenger head and body wasreduced by 18.84 and 18.82 %, respectively and reduction for buttock and leg displacement was18.87 %. The vehicle’s seat and sprung mass displacement displayedan improvement of 18.90 and 18.51 %. The overshoot of passenger's head and body displacement wasimproved by 19.79and 19.62 %,respectively, whereas improvement for buttock & leg, vehicle’s seat, and sprung mass displacement were19.81, 20.00, and 20.49 % against trapezoidal speed bump. The PID controlled suspension disclosed an improvement of 8.74, 8.53, 8.75, 11.11, 14.75 % against circular bump and 10.72, 10.33, 10.73, 11.11 and 11.75 % against trapezoidal bump for overshoot reduction of passenger head, body, buttock & leg, vehicle’s seat and sprung mass displacement, respectively. The proposed BELBIC controlled semi-active suspension outperformed the widely used PID controlled semi-active suspension and indicated asignificant improvement in the ride quality of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document