scholarly journals Agglutination of Jelly Coat and Cortical Granule Components and the Block to Polyspermy in the Amphibian Xenopus laevis

1974 ◽  
Vol 71 (5) ◽  
pp. 2067-2071 ◽  
Author(s):  
R. E. Wyrick ◽  
T. Nishihara ◽  
J. L. Hedrick
2006 ◽  
Vol 52 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Andrea N. Edginton ◽  
Claude Rouleau ◽  
Gerald R. Stephenson ◽  
Herman J. Boermans

1990 ◽  
Vol 1 (3) ◽  
pp. 315-326 ◽  
Author(s):  
W M Bement ◽  
D G Capco

Transit into interphase of the first mitotic cell cycle in amphibian eggs is a process referred to as activation and is accompanied by an increase in intracellular free calcium [( Ca2+]i), which may be transduced into cytoplasmic events characteristic of interphase by protein kinase C (PKC). To investigate the respective roles of [Ca2+]i and PKC in Xenopus laevis egg activation, the calcium signal was blocked by microinjection of the calcium chelator BAPTA, or the activity of PKC was blocked by PKC inhibitors sphingosine or H7. Eggs were then challenged for activation by treatment with either calcium ionophore A23187 or the PKC activator PMA. BAPTA prevented cortical contraction, cortical granule exocytosis, and cleavage furrow formation in eggs challenged with A23187 but not with PMA. In contrast, sphingosine and H7 inhibited cortical granule exocytosis, cortical contraction, and cleavage furrow formation in eggs challenged with either A23187 or PMA. Measurement of egg [Ca2+]i with calcium-sensitive electrodes demonstrated that PMA treatment does not increase egg [Ca2+]i in BAPTA-injected eggs. Further, PMA does not increase [Ca2+]i in eggs that have not been injected with BAPTA. These results show that PKC acts downstream of the [Ca2+]i increase to induce cytoplasmic events of the first Xenopus mitotic cell cycle.


2008 ◽  
Vol 231 (2) ◽  
pp. 434-439
Author(s):  
Yves Plancke ◽  
Jean-Michel Wieruszeski ◽  
Catherine Alonso ◽  
Benoni Boilly ◽  
Gérard Strecker
Keyword(s):  

1985 ◽  
Vol 101 (2) ◽  
pp. 677-682 ◽  
Author(s):  
W B Busa ◽  
J E Ferguson ◽  
S K Joseph ◽  
J R Williamson ◽  
R Nuccitelli

Iontophoresis of inositol 1, 4, 5-triphosphate into frog (Xenopus laevis) eggs activated early developmental events such as membrane depolarization, cortical contraction, cortical granule exocytosis, and abortive cleavage furrow formation (pseudocleavage). Inositol 1, 4-bisphosphate also triggered these events, but only at doses approximately 100-fold higher, whereas no level of fructose-1, 6-bisphosphate tested activated eggs. Using Ca2+-selective microelectrodes, we observed that activating doses of inositol 1, 4, 5-trisphosphate triggered a Ca2+ release from intracellular stores that was indistinguishable from that previously observed at fertilization (Busa, W. B., and R. Nuccitelli, 1985, J. Cell Biol., 100:1325-1329), whereas subthreshold doses triggered only a localized Ca2+ release at the site of injection. The subthreshold IP3 response could be distinguished from the major Ca2+ release at activation with respect to their dose-response characteristics, relative timing, sensitivity to external Ca2+ levels, additivity, and behavior in the activated egg, suggesting that the Xenopus egg may possess two functionally distinct Ca2+ pools mobilized by different effectors. In light of these differences, we suggest a model for intracellular Ca2+ mobilization by sperm-egg interaction.


2000 ◽  
Vol 352 (2) ◽  
pp. 449-463 ◽  
Author(s):  
Yann GUERARDEL ◽  
Ossarath KOL ◽  
Emmanuel MAES ◽  
Tony LEFEBVRE ◽  
Bénoni BOILLY ◽  
...  

Eggs from Xenopus laevis are surrounded by several layers of jelly that are needed for proper fertilization. Jelly coat is composed of high-molecular-mass glycoconjugates to which are bound many globular proteins. O-glycans released from the jelly coat of X. laevis have been partially described in previous studies. In this study, we compared the glycosylation pattern of the egg jelly coat isolated from six specimens of X. laevis. The O-glycans were released from jelly coats by alkali/borohydride treatment. Structural characterization was performed through a combination of one- and two-dimensional 1H-NMR and methylation analysis. This allowed the description of a new family of sulphated O-glycans present in jelly coats of all X. laevis. However, the jelly O-glycans showed a low extent of polymorphism between specimens. This intra-specific variability was restricted to the terminal substitution of O-linked oligosaccharides. The differential expression of two glycosyltransferase [an α-(1 → 4) galactosyltransferase and an α-(1 → 3) fucosyltransferase] activities resulted in the characterization of four phenotypes of X. laevis. Furthermore, electrophoretic analysis suggested that the high-molecular-mass fraction of jelly coat was mostly composed of mucin-type glycoproteins. Blot analysis with lectins confirmed that the glycan variability was borne by these mucin-type components. However, fertilization assays suggested that the glycan polymorphism had no repercussion on egg fertilizability.


Biochemistry ◽  
1975 ◽  
Vol 14 (14) ◽  
pp. 3101-3107 ◽  
Author(s):  
Edward C. Yurewicz ◽  
Gene Oliphant ◽  
Jerry L. Hedrick

Zygote ◽  
2001 ◽  
Vol 9 (2) ◽  
pp. 167-181 ◽  
Author(s):  
Judith A. Boyle ◽  
Hui Chen ◽  
James R. Bamburg

Scanning and transmission electron microscopy were used to determine the morphological changes in the egg plasma membrane associated with sperm binding, fusion and incorporation in Xenopus laevis. Sperm incorporation in Xenopus is rapid, occurring within 3-5 min following addition of sperm. Images have been obtained of both early sperm-egg interactions and fertilisation bodies. Additionally, two drugs that specifically alter F-actin dynamics, latrunculin and jasplakinolide, were used to determine whether sperm incorporation is a microfilament-dependent process. Jasplakinolide did not prevent sperm incorporation, cortical granule exocytosis or cortical contraction, suggesting these events can occur without depolymerisation of existing, stabilised filaments. Latrunculin A, which competes with thymosin β4 in ooplasm for binding actin monomer, did not inhibit cortical granule exocytosis, but blocked cortical contraction in 100% of eggs at a concentration of 5 μM. Although a single penetrating sperm was found on an egg pretreated in latrunculin, fertilisation bodies were never observed. At <5 μM latrunculin, many eggs did undergo cortical contraction with some exhibiting severe distortions of the plasma membrane and abnormal accumulations of pigment granules. Preincubation of eggs in jasplakinolide before latrunculin mitigated both these effects to some degree. However, eggs incubated in latrunculin either prior to or after insemination never progressed through first cleavage.


1974 ◽  
Vol 11 (5) ◽  
pp. 534-542 ◽  
Author(s):  
Jerry L. Hedrick ◽  
Alan J. Smith ◽  
Edward C. Yurewicz ◽  
Gene Oliphant ◽  
Don P. Wolf
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document