scholarly journals Effect of uridine on cellular UTP and glycogen synthesis in skeletal muscle: stimulation of UTP formation by insulin.

1977 ◽  
Vol 74 (6) ◽  
pp. 2339-2342 ◽  
Author(s):  
E. S. Haugaard ◽  
K. B. Frantz ◽  
N. Haugaard
1985 ◽  
Vol 248 (1) ◽  
pp. E148-E151
Author(s):  
T. W. Balon ◽  
A. Zorzano ◽  
M. N. Goodman ◽  
N. B. Ruderman

Insulin increased O2 consumption in isolated perfused rat muscle for upward of 2 h after a treadmill run. Insulin did not increase O2 consumption in nonexercised rats, nor did prior exercise increase O2 consumption in the absence of added insulin. The stimulation of glycogen synthesis by insulin was also enhanced in muscle of previously exercised rats. The additional energy required for this was not sufficient to account for the increase in O2 consumption, however. The results indicate that insulin increases thermogenesis in skeletal muscle after exercise. They also raise the possibility that in intact organisms the thermogenic effect of foods that increase insulin secretion could be increased by prior exercise.


1995 ◽  
Vol 269 (2) ◽  
pp. H717-H724 ◽  
Author(s):  
T. H. Adair ◽  
J. Hang ◽  
M. L. Wells ◽  
F. D. Magee ◽  
J. P. Montani

We tested whether chronic stimulation of skeletal muscle can increase the growth of paired arteries and veins in rabbit extensor digitorum longus muscle (EDL). The right EDL of female New Zealand White rabbits was stimulated via the common peroneal nerve at 10 Hz using 300 microseconds square waves at 3-4 V. Two-hour periods of stimulation was alternated with 4-h periods of rest, 7 days/wk for approximately 60 days. The left EDL served as control. The hindlimb vascular system was maximally dilated and perfuse-fixed with 3% glutaraldehyde and 2% paraformaldehyde at arterial and venous pressures of 80-100 and 15-20 mmHg, respectively. Muscles were postfixed in OsO4 and embedded in EPOX 812 resin. One millimeter-thick transverse sections were cut at uniform locations through the entire breadth of the muscle and analyzed using videomicroscopy along with computerized morphometric and stereological techniques. All paired arteries and veins on each full muscle section were analyzed. Chronic muscle stimulation caused the wall volume of paired arteries and veins to increase by an average of approximately twofold and the lumen volume to increase by an average of approximately threefold compared with the contralateral muscles. The wall-to-lumen area ratio of the arteries and veins was not affected. Muscle stimulation also caused the numerical density of arteries having a diameter > 100 microns to increase by approximately fourfold and the density of veins having a perimeter > 500 microns to increase by approximately 10-fold.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 246 (1) ◽  
pp. 163-172 ◽  
Author(s):  
R A Challiss ◽  
D J Hayes ◽  
G K Radda

1. The effects of beta-adrenoceptor antagonist administration on skeletal muscle contractile performance and bioenergetics in vivo have been investigated during unilateral sciatic nerve stimulation in the rat. 2. Two muscle stimulation protocols have been used: supramaximal stimulation at 4 Hz, or incremental supramaximal stimulation at 1, 2 and 4 Hz. Changes in high-energy phosphate concentrations were followed using 31P-n.m.r., and gastrocnemius muscle twitch characteristics were monitored continuously. 3. Under all conditions investigated, DL-propranolol administration (2.5 mg/kg body wt.) caused a significant decrease in cyclic AMP concentrations in resting and stimulated gastrocnemius muscle, prevented an increase in heart rate upon muscle stimulation, but did not affect plasma glucose, fatty acid or lactate concentrations in comparison with values obtained in control experiments. 4. Administration of DL-propranolol 5 min or 35 min before unilateral stimulation of 4 Hz had no effect on changes in muscle phosphocreatine, ATP or Pi concentrations, intracellular pH or contractile performance. 5. In contrast, animals receiving DL-propranolol 5 min before unilateral stimulation of 1, 2 and 4 Hz showed a significant deterioration in gastrocnemius muscle tension development during 2 and 4 Hz stimulation compared with control animals. Concurrent with this change in contractile performance was a higher muscle concentration of phosphocreatine, a lower concentration of Pi and no significant change in intramuscular pH compared with control experiments. 6. The changes in muscle performance and bioenergetics observed during the incremental stimulation protocol were not observed when D-propranolol was administered and could be completely circumvented by a short period of muscle stimulation of 4 Hz prior to initiation of the incremental stimulation protocol. 7. Mechanisms are discussed which may account for the failure of gastrocnemius muscle to generate the expected force during the incremental stimulation protocol in the presence of beta-blockade.


1985 ◽  
Vol 232 (1) ◽  
pp. 273-276 ◽  
Author(s):  
A S Clark ◽  
J M Fagan ◽  
W E Mitch

To determine if vanadate has insulin-like actions in skeletal muscle, we measured its effects on glucose and protein metabolism in epitrochlearis muscles of rats. Compared with insulin, vanadate increased glucose uptake, glycogen synthesis and glycolysis to a lesser degree, but caused a greater stimulation of lactate and glucose oxidation. Unlike insulin, vanadate did not change either protein synthesis or degradation. These different metabolic responses could be related to the different pattern of insulin-receptor phosphorylation caused by insulin and vanadate.


2019 ◽  
Vol 105 (2) ◽  
pp. 557-566 ◽  
Author(s):  
Kittichate Visuttijai ◽  
Carola Hedberg-Oldfors ◽  
Christer Thomsen ◽  
Emma Glamuzina ◽  
Cornelia Kornblum ◽  
...  

Abstract Context Glycogenin is considered to be an essential primer for glycogen biosynthesis. Nevertheless, patients with glycogenin-1 deficiency due to biallelic GYG1 (NM_004130.3) mutations can store glycogen in muscle. Glycogenin-2 has been suggested as an alternative primer for glycogen synthesis in patients with glycogenin-1 deficiency. Objective The objective of this article is to investigate the importance of glycogenin-1 and glycogenin-2 for glycogen synthesis in skeletal and cardiac muscle. Design, Setting, and Patients Glycogenin-1 and glycogenin-2 expression was analyzed by Western blot, mass spectrometry, and immunohistochemistry in liver, heart, and skeletal muscle from controls and in skeletal and cardiac muscle from patients with glycogenin-1 deficiency. Results Glycogenin-1 and glycogenin-2 both were found to be expressed in the liver, but only glycogenin-1 was identified in heart and skeletal muscle from controls. In patients with truncating GYG1 mutations, neither glycogenin-1 nor glycogenin-2 was expressed in skeletal muscle. However, nonfunctional glycogenin-1 but not glycogenin-2 was identified in cardiac muscle from patients with cardiomyopathy due to GYG1 missense mutations. By immunohistochemistry, the mutated glycogenin-1 colocalized with the storage of glycogen and polyglucosan in cardiomyocytes. Conclusions Glycogen can be synthesized in the absence of glycogenin, and glycogenin-1 deficiency is not compensated for by upregulation of functional glycogenin-2. Absence of glycogenin-1 leads to the focal accumulation of glycogen and polyglucosan in skeletal muscle fibers. Expression of mutated glycogenin-1 in the heart is deleterious, and it leads to storage of abnormal glycogen and cardiomyopathy.


FEBS Letters ◽  
1990 ◽  
Vol 259 (2) ◽  
pp. 269-272 ◽  
Author(s):  
F.Norman Briggs ◽  
K.Francis Lee ◽  
Joseph J. Feher ◽  
Andrew S. Wechsler ◽  
Kay Ohiendieck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document