Insulin increases thermogenesis in rat skeletal muscle following exercise

1985 ◽  
Vol 248 (1) ◽  
pp. E148-E151
Author(s):  
T. W. Balon ◽  
A. Zorzano ◽  
M. N. Goodman ◽  
N. B. Ruderman

Insulin increased O2 consumption in isolated perfused rat muscle for upward of 2 h after a treadmill run. Insulin did not increase O2 consumption in nonexercised rats, nor did prior exercise increase O2 consumption in the absence of added insulin. The stimulation of glycogen synthesis by insulin was also enhanced in muscle of previously exercised rats. The additional energy required for this was not sufficient to account for the increase in O2 consumption, however. The results indicate that insulin increases thermogenesis in skeletal muscle after exercise. They also raise the possibility that in intact organisms the thermogenic effect of foods that increase insulin secretion could be increased by prior exercise.

1981 ◽  
Vol 241 (3) ◽  
pp. C145-C149 ◽  
Author(s):  
K. Zierler ◽  
E. Rogus

Experiments were designed to test the hypothesis that insulin-induced hyperpolarization of rat skeletal muscle is mediated by stimulation of a ouabain-inhibitable electrogenic pump. Parallel experiments were carried out on rat caudofemoralis with isoproterenol, known to hyperpolarize rat skeletal muscle by stimulation of such a pump. Ouabain (10(-5) M) completely inhibited isoproterenol-induced hyperpolarization within 15 min but had no effect on half-maximal insulin-induced hyperpolarization. Ouabain (10(-6) M) inhibited isoproterenol effect by 60% during a period of 5–15 min. Ouabain (10(-4) M) had no effect on insulin-induced hyperpolarization within 10 min but depolarized during the next 10 min. In a separate series of studies in rat extensor digitorum longus muscle, 10(-5) M ouabain increased intracellular Na+ within 14 min. It is concluded that in rat caudofemoralis muscle, insulin-induced hyperpolarization is not mediated by a ouabain-inhibitable electrogenic pump.


2009 ◽  
Vol 297 (3) ◽  
pp. E785-E792 ◽  
Author(s):  
Karin Stadlbauer ◽  
Barbara Brunmair ◽  
Zsuzsanna Szöcs ◽  
Michael Krebs ◽  
Anton Luger ◽  
...  

Two mechanisms have been proposed for the modulation of skeletal muscle glucose metabolism by amino acids. Whereas studies on humans and cultured cells suggested acute insulin desensitization via mammalian target of rapamycin (mTOR) and its downstream target p70 S6 kinase (S6K), investigations using native specimens of rat muscle hinted at impairment of glucose oxidation by competition for mitochondrial oxidation. To better understand these seemingly contradictory findings, we explored the effects of high concentrations of mixed amino acids on fuel metabolism and S6K activity in freshly isolated specimens of rat skeletal muscle. In this setting, increasing concentrations of amino acids dose-dependently reduced the insulin-stimulated rates of CO2 production from glucose and palmitate (decrease in glucose oxidation induced by addition of 5.5, 11, 22, and 44 mmol/l amino acids: −16 ± 3, −25 ± 7, −44 ± 4, −62 ± 4%; P < 0.02 each). This effect could not be attributed to insulin desensitization, because it was not accompanied by any reduction of insulin-stimulated glucose transport [+12 ± 16, +17 ± 22, +21 ± 33, +13 ± 12%; all nonsignificant (NS)] or glycogen synthesis (+1 ± 6, −5 ± 6, −9 ± 8, +6 ± 5%; all NS) and because it persisted without insulin stimulation. Abrogation of S6K activity by the mTOR blocker rapamycin failed to counteract amino acid-induced inhibition of glucose and palmitate oxidation, which therefore was obviously independent of mTOR/S6K signaling (decrease in glucose oxidation by addition of 44 mmol/l amino acids: without rapamycin, −60 ± 4%; with rapamycin, −50 ± 13%; NS). We conclude that amino acids can directly affect muscle glucose metabolism via two mechanisms, mTOR/S6K-mediated insulin desensitization and mitochondrial substrate competition, with the latter predominating in isolated rat muscle.


1981 ◽  
Vol 241 (5) ◽  
pp. C200-C203 ◽  
Author(s):  
J. L. Ivy ◽  
J. O. Holloszy

The effect of a bout of exercise on glucose uptake and glycogen synthesis in skeletal muscle was examined using a perfused rat hindlimb preparation. Rats were subjected to a bout of swimming. The exercise stress was moderate as reflected in a reduction of muscle glycogen concentration of only 50%. Glucose uptake and glycogen synthesis were measured in perfused hindlimb muscles for a 30-min period beginning approximately 60 min following the exercise. The rate of glucose uptake in the absence of insulin was 10-fold higher in hindlimbs of exercised animals than in the controls. The rate of glucose uptake was also higher in exercised than in control muscles in the presence of 50 microunits/ml or 10 mU/ml of insulin, but these differences were smaller than that found in the absence of insulin. Conversion to glycogen was the major pathway for disposal of the glucose taken up by muscle. The rate of glycogen accumulation in the exercised plantaris muscles was greater than in the control muscles both in the absence and presence of insulin.


1990 ◽  
Vol 258 (4) ◽  
pp. C648-C653 ◽  
Author(s):  
E. J. Henriksen ◽  
J. O. Holloszy

The trivalent arsenical phenylarsine oxide (PAO) inhibits insulin-stimulated glucose transport in adipocytes and skeletal muscle through direct interactions with vicinal sulfhydryls. In muscle, glucose transport is also activated by contractile activity and hypoxia. It was therefore the purpose of the present study to investigate whether vicinal sulfhydryls are involved in the stimulation of glucose transport activity in the isolated rat epitrochlearis muscle by hypoxia or contractions. PAO (greater than 5 microM) caused a twofold increase in rate of transport of the nonmetabolizable glucose analogue 3-O-methylglucose (3-MG) that was completely prevented by cytochalasin B, the vicinal dithiol dimercaptopropanol, dantrolene, or 9-aminoacridine, both inhibitors of sarcoplasmic reticulum Ca2+ release, or omission of extracellular Ca2+. Although PAO treatment (greater than or equal to 20 microM) prevented approximately 80% of the increase in 3-MG transport caused by insulin, it resulted in only a approximately 50% inhibition of the stimulation of 3-MG transport by either hypoxia or contractile activity. PAO treatment (40 microM) of muscles already maximally stimulated by insulin, contractile activity, or hypoxia did not reverse the enhanced rate of 3-MG transport. These data suggest that vicinal sulfhydryls play a greater role in the activation of glucose transport by insulin than by muscle contractions or hypoxia. The finding that PAO inhibits the stimulation of glucose transport, but does not affect glucose transport after it has been stimulated, provides evidence that vicinal sulfhydryls are involved in the pathways for glucose transport activation in muscle, but not in the glucose transport mechanism itself.


1996 ◽  
Vol 51 (7-8) ◽  
pp. 591-598 ◽  
Author(s):  
M. Nogues ◽  
A. Cuenda ◽  
F. Henao ◽  
C. Gutiérrez-Merino

Abstract The glycogenolytic-sarcoplasmic reticulum complex from rat skeletal muscle accumulates Ca2+ upon stimulation of glycogen phosphorolysis in the absence of added ATP. It is shown that an efficient Ca2+ uptake involves the sequential action of glycogen phosphorylase, phosphoglucomutase and hexokinase, which generate low concentrations of ATP (approximately 1 -2 μм) compartmentalized in the immediate vicinity of the sarcoplasmic reticulum Ca2+, Mg2+-ATPase (the Ca2+ pump). The Ca2+ uptake supported by glycogenolysis in this subcellular structure is strongly stimulated by micromolar concentrations of AMP, showing that the glycogen phosphorylase associated with this complex is in the dephosphorylated b form. The results point out that the flux through this compartmentalized metabolic pathway should be enhanced in physiological conditions leading to increased AMP concentrations in the sarcoplasm, such as long-lasting contractions and in ischemic muscle.


1992 ◽  
Vol 286 (2) ◽  
pp. 561-565 ◽  
Author(s):  
S J Bevan ◽  
M Parry-Billings ◽  
E Opara ◽  
C T Liu ◽  
D B Dunger ◽  
...  

The effect of insulin-like growth factor II (IGF II) on the rates of lactate formation, glycogen synthesis and glucose transport in the presence of a range of concentrations of insulin were investigated using an isolated preparation of rat skeletal muscle. IGF II, at a concentration of 65 ng/ml, caused a small but significant increase in the rates of these processes at a basal physiological insulin concentration (10 muunits/ml), but was without effect in the presence of 1, 100, 1000 or 10,000 muunits of insulin/ml. Hence IGF II increased the insulin sensitivity of this tissue. This effect was removed if the incubation medium was supplemented with an equimolar concentration of IGF binding protein 1 (BP1). It is suggested that changes in the concentration of IGF II and/or BP1 may regulate glucose uptake and metabolism in skeletal muscle and have physiological significance in the control of blood glucose level.


Sign in / Sign up

Export Citation Format

Share Document