scholarly journals Cell lineages of the embryo of the nematode Caenorhabditis elegans.

1978 ◽  
Vol 75 (1) ◽  
pp. 376-380 ◽  
Author(s):  
U. Deppe ◽  
E. Schierenberg ◽  
T. Cole ◽  
C. Krieg ◽  
D. Schmitt ◽  
...  
Genetics ◽  
1980 ◽  
Vol 96 (2) ◽  
pp. 435-454 ◽  
Author(s):  
H Robert Horvitz ◽  
John E Sulston

ABSTRACT Twenty-four mutants that alter the normally invariant post-embryonic cell lineages of the nematode Caenorhabditis elegans have been isolated and genetically characterized. In some of these mutants, cell divisions fail that occur in wild-type animals; in other mutants, cells divide that do not normally do so. The mutants differ in the specificities of their defects, so that it is possible to identify mutations that affect some cell lineages but not others. These mutants define 14 complementation groups, which have been mapped. The abnormal phenotype of most of the cell-lineage mutants results from a single recessive mutation; however, the excessive cell divisions characteristic of one strain, CB1322, require the presence of two unlinked recessive mutations. All 24 cell-lineage mutants display incomplete penetrance and/or variable expressivity. Three of the mutants are suppressed by pleiotropic suppressors believed to be specific for null alleles, suggesting that their phenotypes result from the complete absence of gene activity.


Genetics ◽  
1985 ◽  
Vol 110 (1) ◽  
pp. 17-72
Author(s):  
Edwin L Ferguson ◽  
H Robert Horvitz

ABSTRACT Ninety-five mutants of the nematode Caenorhabditis elegans altered in the cell lineages of the vulva have been isolated on the basis of their displaying one of two phenotypes, Vulvaless or Multivulva. In Vulvaless mutants, which define 12 genes, no vulva is present. In Multivulva mutants, which define ten genes, one or more supernumerary vulva-like protrusions are located along the ventral side of the animal. A single recessive mutation is responsible for the phenotypes of most, but not all, of these strains. Fifteen of these 22 genes are represented by multiple alleles. We have shown by a variety of genetic criteria that mutations that result in a Vulvaless or Multivulva phenotype in six of the 22 genes most likely eliminate gene function. In addition, Vulvaless or Multivulva mutations in seven of the other genes most likely result in a partial reduction of gene function; the absence of the activity of any of these genes probably results in lethality or sterility. Our results suggest that we may have identified most, or all, genes of these two classes.


2003 ◽  
Vol 66 (9) ◽  
pp. 1543-1549 ◽  
Author(s):  
GARY L. ANDERSON ◽  
KRISHAUN N. CALDWELL ◽  
LARRY R. BEUCHAT ◽  
PHILLIP L. WILLIAMS

Free-living nematodes may harbor, protect, and disperse bacteria, including those ingested and passed in viable form in feces. These nematodes are potential vectors for human pathogens and may play a role in foodborne diseases associated with fruits and vegetables eaten raw. In this study, we evaluated the associations between a free-living soil nematode, Caenorhabditis elegans, and Escherichia coli, an avirulent strain of Salmonella Typhimurium, Listeria welshimeri, and Bacillus cereus. On an agar medium, young adult worms quickly moved toward colonies of all four bacteria; over 90% of 3-day-old adult worms entered colonies within 16 min after inoculation. After 48 h, worms moved in and out of colonies of L. welshimeri and B. cereus but remained associated with E. coli and Salmonella Typhimurium colonies for at least 96 h. Young adult worms fed on cells of the four bacteria suspended in K medium. Worms survived and reproduced with the use of nutrients derived from all test bacteria, as determined for eggs laid by second-generation worms after culturing for 96 h. Development was slightly slower for worms fed gram-positive bacteria than for worms fed gram-negative bacteria. Worms that fed for 24 h on bacterial lawns formed on tryptic soy agar dispersed bacteria over a 3-h period when they were transferred to a bacteria-free agar surface. The results of this study suggest that C. elegans and perhaps other free-living nematodes are potential vectors for both gram-positive and gram-negative bacteria, including foodborne pathogens in soil.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1081-1088 ◽  
Author(s):  
Quang Hien Le ◽  
Kime Turcotte ◽  
Thomas Bureau

Abstract Members of the Tourist family of miniature inverted-repeat transposable elements (MITEs) are very abundant among a wide variety of plants, are frequently found associated with normal plant genes, and thus are thought to be important players in the organization and evolution of plant genomes. In Arabidopsis, the recent discovery of a Tourist member harboring a putative transposase has shed new light on the mobility and evolution of MITEs. Here, we analyze a family of Tourist transposons endogenous to the genome of the nematode Caenorhabditis elegans (Bristol N2). One member of this large family is 7568 bp in length, harbors an ORF similar to the putative Tourist transposase from Arabidopsis, and is related to the IS5 family of bacterial insertion sequences (IS). Using database searches, we found expressed sequence tags (ESTs) similar to the putative Tourist transposases in plants, insects, and vertebrates. Taken together, our data suggest that Tourist-like and IS5-like transposons form a superfamily of potentially active elements ubiquitous to prokaryotic and eukaryotic genomes.


Sign in / Sign up

Export Citation Format

Share Document