scholarly journals IDENTIFICATION AND CHARACTERIZATION OF 22 GENES THAT AFFECT THE VULVAL CELL LINEAGES OF THE NEMATODE CAENORHABDITIS ELEGANS

Genetics ◽  
1985 ◽  
Vol 110 (1) ◽  
pp. 17-72
Author(s):  
Edwin L Ferguson ◽  
H Robert Horvitz

ABSTRACT Ninety-five mutants of the nematode Caenorhabditis elegans altered in the cell lineages of the vulva have been isolated on the basis of their displaying one of two phenotypes, Vulvaless or Multivulva. In Vulvaless mutants, which define 12 genes, no vulva is present. In Multivulva mutants, which define ten genes, one or more supernumerary vulva-like protrusions are located along the ventral side of the animal. A single recessive mutation is responsible for the phenotypes of most, but not all, of these strains. Fifteen of these 22 genes are represented by multiple alleles. We have shown by a variety of genetic criteria that mutations that result in a Vulvaless or Multivulva phenotype in six of the 22 genes most likely eliminate gene function. In addition, Vulvaless or Multivulva mutations in seven of the other genes most likely result in a partial reduction of gene function; the absence of the activity of any of these genes probably results in lethality or sterility. Our results suggest that we may have identified most, or all, genes of these two classes.

Genetics ◽  
1980 ◽  
Vol 96 (2) ◽  
pp. 435-454 ◽  
Author(s):  
H Robert Horvitz ◽  
John E Sulston

ABSTRACT Twenty-four mutants that alter the normally invariant post-embryonic cell lineages of the nematode Caenorhabditis elegans have been isolated and genetically characterized. In some of these mutants, cell divisions fail that occur in wild-type animals; in other mutants, cells divide that do not normally do so. The mutants differ in the specificities of their defects, so that it is possible to identify mutations that affect some cell lineages but not others. These mutants define 14 complementation groups, which have been mapped. The abnormal phenotype of most of the cell-lineage mutants results from a single recessive mutation; however, the excessive cell divisions characteristic of one strain, CB1322, require the presence of two unlinked recessive mutations. All 24 cell-lineage mutants display incomplete penetrance and/or variable expressivity. Three of the mutants are suppressed by pleiotropic suppressors believed to be specific for null alleles, suggesting that their phenotypes result from the complete absence of gene activity.


Biochemistry ◽  
2001 ◽  
Vol 40 (34) ◽  
pp. 10392-10401 ◽  
Author(s):  
John P. Throup ◽  
Francesca Zappacosta ◽  
R. Dwayne Lunsford ◽  
Roland S. Annan ◽  
Steven A. Carr ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e113737 ◽  
Author(s):  
Kara Braunreiter ◽  
Shelby Hamlin ◽  
Jamie Lyman-Gingerich

Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 523-530
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II isozyme (enzyme, ADHII; structural gene, ADH2) of the yeast, Saccharomyces cerevisiae, is under stringent carbon catabolite control. This cytoplasmic isozyme exhibits negligible activity during growth in media containing fermentable carbon sources such as glucose and is maximal during growth on nonfermentable carbon sources. A recessive mutation, adr6-1, and possibly two other alleles at this locus, were selected for their ability to decrease Ty-activated ADH2-6 c expression. The adr6-1 mutation led to decreased ADHII activity in both ADH2-6c and ADH2+ strains, and to decreased levels of ADH2 mRNA. Ty transcription and the expression of two other carbon catabolite regulated enzymes, isocitrate lyase and malate dehydrogenase, were unaffected by the adr6-1 mutation. adr6-1/adr6-1strains were defective for sporulation, indicating that adr6 mutations may have pleiotropic effects. The sporulation defect was not a consequence of decreased ADH activity. Since the ADH2-6c mutation is due to insertion of a 5.6-kb Ty element at the TATAA box, it appears that the ADR6+-dependent ADHII activity required ADH2 sequences 3′ to or including the TATAA box. The ADH2 upstream activating sequence (UAS) was probably not required. The ADR6 locus was unlinked to the ADR1 gene which encodes another trans-acting element required for ADH2 expression.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Jung Wook Kim ◽  
Hyun-Kyung Kim ◽  
Gi Su Kang ◽  
Il-Hwan Kim ◽  
Hwa Su Kim ◽  
...  

1978 ◽  
Vol 75 (1) ◽  
pp. 376-380 ◽  
Author(s):  
U. Deppe ◽  
E. Schierenberg ◽  
T. Cole ◽  
C. Krieg ◽  
D. Schmitt ◽  
...  

1996 ◽  
Vol 317 (1) ◽  
pp. 179-185 ◽  
Author(s):  
Antony P. PAGE ◽  
Kenneth MacNIVEN ◽  
Michael O. HENGARTNER

Cyclosporin A (CsA) is the most widely used immunosuppressive agent, whose properties are exerted via an interaction with cyclophilin, resulting in down-regulation of signal-transduction events in the T-cell. Cyclophilin is identical with peptidylprolyl cis–trans isomerase (PPI; EC 5.2.1.8), an enzyme which catalyses the isomerization between the two proline conformations in proteins, thereby acting as a catalyst in protein-folding events. Several reports indicate that CsA has potent anti-parasitic activity, effective against both protozoan and helminth species. In order to understand the various biological roles that cyclophilins play we have initiated a study of these proteins in the genetically tractable nematode Caenorhabditis elegans. Here we describe the cloning and characterization of 11 cyclophilin genes (cyp-1 to -11) derived from this nematode; this is currently the greatest number of isoforms described in a single species. Southern blotting and physical mapping indicated that these genes are dispersed throughout the nematode genome. A high degree of conservation exists between several isoforms, which also share characteristics with the ubiquitous isoforms previously described. The remaining isoforms are divergent, having altered CsA-binding domains and additional non-cyclophilin domains, which may impart compartmental specificity. Ten of these isoforms have been expressed in Escherichia coli, and the resultant fusion proteins have been examined biochemically for PPI activity, which they all possess. Isomerase activity is highest in the conserved and lowest in divergent isoforms, perhaps indicating a more specific substrate for the latter. Analysis of the C. elegans cyp genes will provide answers as to the roles played by cyclophilins in protein folding and signal transduction.


Genetics ◽  
1986 ◽  
Vol 113 (4) ◽  
pp. 821-852
Author(s):  
Eun-Chung Park ◽  
H Robert Horvitz

ABSTRACT We have analyzed 31 mutations that have dominant effects on the behavior or morphology of the nematode Caenorhabditis elegans. These mutations appear to define 15 genes. We have studied ten of these genes in some detail and have been led to two notable conclusions. First, loss of gene function for four of these ten genes results in a wild-type phenotype; if these genes represent a random sample from the genome, then we would estimate that null mutations in about half of the genes in C. elegans would result in a nonmutant phenotype. Second, the dominant effects of mutations in nine of these ten genes are caused by novel gene functions, and in all nine cases the novel function is antagonized by the wild-type function.


Eisei kagaku ◽  
1986 ◽  
Vol 32 (1) ◽  
pp. 22-27 ◽  
Author(s):  
KOHJI MARUYAMA ◽  
RITSUKO HORI ◽  
TSUTOMU NISHIHARA ◽  
MASAOMI KONDO

Sign in / Sign up

Export Citation Format

Share Document