avirulent strain
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 19)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
pp. 204-211
Author(s):  
Ully Apriliana ◽  
Hendra Wibawa ◽  
Endang Ruhiat ◽  
Tri Untari ◽  
Soedarmanto Indarjulianto

Background and Aim: Anthrax is a non-contagious infectious disease caused by Bacillus anthracis. The bacteria form spores that are resistant to extreme conditions and can contaminate the environment for decades. This study aimed to detect and characterize B. anthracis found in endemic areas of anthrax in Yogyakarta and Central Java province, Indonesia. Materials and Methods: Soil samples were collected from Gunungkidul regency, Yogyakarta province (n=315) and Boyolali regency, Central Java province (n=100). Additional soil samples (n=10) and straw samples (n=5) were obtained from Pati regency, Central Java province. The isolation and identification of B. anthracis were performed using conventional methods: Morphology of bacteria colony in solid media, Gram staining, capsule staining, spores staining, and motility test. Isolates were further identified using polymerase chain reaction (PCR) against Ba813, lef (pXO1), and capC (pXO2) gene. An avirulent vaccine strain of B. anthracis (strain 34F2) was used as a control. Results: Only four samples grew on blood agar with a ground-glass appearance, white-gray colony (Gunungkidul and avirulent strain) or yellowish (Boyolali and Pati). All were Gram-positive, presented chains, square-ended rods, spores, and were then identified as B. anthracis. Boyolali, Pati, and avirulent strain isolates had slightly different characteristics, including the growth of non-mucoid in the bicarbonate agar medium, and their uncapsulated form. The PCR showed two Gunungkidul isolates which amplified three genes, including Ba813, lef, and capC. Contrarily, the other isolates did not amplify the capC gene. Conclusion: Gunungkidul isolates were identified as virulent strains of B. anthracis while Boyolali and Pati isolates were proposed as avirulent strains. This is the first report of isolation and identification of avirulent strains of B. anthracis in Central Java, Indonesia.


2021 ◽  
Vol 22 (16) ◽  
pp. 8484
Author(s):  
Shengchun Li ◽  
Haiyan Ding ◽  
Yi Deng ◽  
Jiang Zhang

Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living cells. The homeostasis of NAD is required for plant growth, development, and adaption to environmental stresses. Quinolinate phosphoribosyltransferase (QPRT) is a key enzyme in NAD de novo synthesis pathway. T-DNA-based disruption of QPRT gene is embryo lethal in Arabidopsis thaliana. Therefore, to investigate the function of QPRT in Arabidopsis, we generated transgenic plants with decreased QPRT using the RNA interference approach. While interference of QPRT gene led to an impairment of NAD biosynthesis, the QPRT RNAi plants did not display distinguishable phenotypes under the optimal condition in comparison with wild-type plants. Intriguingly, they exhibited enhanced sensitivity to an avirulent strain of Pseudomonas syringae pv. tomato (Pst-avrRpt2), which was accompanied by a reduction in salicylic acid (SA) accumulation and down-regulation of pathogenesis-related genes expression as compared with the wild type. Moreover, oxidative stress marker genes including GSTU24, OXI1, AOX1 and FER1 were markedly repressed in the QPRT RNAi plants. Taken together, these data emphasized the importance of QPRT in NAD biosynthesis and immunity defense, suggesting that decreased antibacterial immunity through the alteration of NAD status could be attributed to SA- and reactive oxygen species-dependent pathways.


Author(s):  
Kiwamu Nakamura ◽  
Yasuka Hara ◽  
Rie Harada ◽  
Daiki Tanno ◽  
Jun Kashiwazaki ◽  
...  

Ozonated water is a possible handwashing alternative to antimicrobial soap and water. In a previous report, 4 ppm of ozonated water removed artificially contaminated bacteria from the hands of healthy volunteers as effectively as antimicrobial or non-antimicrobial soap and water. Currently, there is a lack of data on the efficacy of ozonated water in removing bacteria from hands loaded with organic materials. This study aimed to evaluate the effectiveness of ozonated water in removing bacteria from hands contaminated with organic material, according to the American Society for Testing and Materials E2946-13. Sixteen healthy volunteers were randomly assigned to the ozonated water group and antimicrobial soap and water group. Their hands were contaminated with an avirulent strain of Escherichia coli in beef broth suspension. Approximately three log10 CFU bacterial reductions between baseline and post-wash colonies were observed on the hands in both groups. Ozonated water may remove bacteria from hands contaminated with organic material with similar effectiveness as antimicrobial soap and water.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 921
Author(s):  
Xue Sun ◽  
Mengxu Sun ◽  
Lijiao Zhang ◽  
Ziding Yu ◽  
Jinxin Li ◽  
...  

Tembusu virus (TMUV), a highly infectious pathogenic flavivirus, causes severe egg-drop and encephalitis in domestic waterfowl, while the determinants responsible for viral pathogenicity are largely unknown. In our previous studies, virulent strain JXSP2-4 had been completely attenuated by successive passages in BHK-21 cells and the avirulent strain was designated as JXSP-310. Based on the backbone of JXSP2-4, a series of chimeric viruses were generated according to the amino acid substitutions in NS5 and their infectivities were also analyzed in cell cultures and ducklings. The results showed that the viral titers of RNA-dependent RNA polymerase (RdRp) domain-swapped cheimeric mutant (JXSP-310RdRp) in cells and ducklings were both markedly decreased compared with JXSP2-4, indicating that mutations in the RdRp domain affected viral replication. There are R543K and V711A two amino acid substitutions in the RdRp domain. Further site-directed mutagenesis showed that single-point R543K mutant (JXSP-R543K) exhibited similar replication efficacy compared with JXSP2-4 in cells, but the viral loads in JXSP-R543K-infected ducklings were significantly lower than that of JXSP2-4 and higher than JXSP-310RdRp. Surprisingly, the single-point V711A mutation we introduced rapidly reverted. In addition, qRT-PCR and Western blot confirmed that the mutations in the RdRp domain significantly affected the replication of the virus. Taken together, these results show that R543K substitution in the RdRp domain impairs the in vivo growth of TMUV, but sustaining its attenuated infectivity requires the concurrent presence of the V711A mutation.


Author(s):  
Lucía Arenas-Alfonseca ◽  
Cecilia Gotor ◽  
Luis C Romero ◽  
Irene García

Abstract Plant responses to pathogens comprise a complex process, implying a plethora of signals and reactions. Among them, endogenous production of hydrogen cyanide (HCN) has been shown to induce resistance in Arabidopsis to the hemibiotrophic bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. β-cyanoalanine synthase (CAS-C1) is responsible for the detoxification of HCN in Arabidopsis mitochondria. Here, we show that green fluorescent protein-tagged CAS-C1 is transiently reduced in leaves infected with an avirulent strain of Pst during early interactions and increased in leaves infected with a virulent strain of Pst, supporting previous transcriptional data. Genetic crosses show that mutation in CAS-C1 in Arabidopsis resembles the action of the NADPH oxidase RbohD independently of reactive oxygen species production and that the accumulation of salicylic acid is required for HCN-stimulated resistance to Pst. Finally, we show that the cas-c1 mutation acts on the salicylic acid-dependent response to pathogens by mechanisms other than protein ubiquitination or the increase of monomerization and entry to the nucleus of NPR1, the central regulator of the salicylic acid-mediated response. Considering these results, we propose new mechanisms for modulation of the immune response by HCN.


2021 ◽  
Vol 15 (1) ◽  
pp. e0009008
Author(s):  
Marie Buysse ◽  
Maxime Duhayon ◽  
Franck Cantet ◽  
Matteo Bonazzi ◽  
Olivier Duron

Q fever is a widespread zoonotic disease caused by the intracellular bacterium Coxiella burnetii. While transmission is primarily but not exclusively airborne, ticks are usually thought to act as vectors on the basis of early microscopy studies. However, recent observations revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii, calling the importance of tick-borne transmission into question. In this study, we re-evaluated the vector competence of the African soft tick Ornithodoros moubata for an avirulent strain of C. burnetii. To this end, we used an artificial feeding system to initiate infection of ticks, specific molecular tools to monitor further infections, and culture assays in axenic and cell media to check for the viability of C. burnetii excreted by ticks. We observed typical traits associated with vector competence: The exposure to an infected blood meal resulted in viable and persistent infections in ticks, trans-stadial transmissions of infection from nymphs to adults and the ability of adult ticks to transmit infectious C. burnetii. However, in contrast to early studies, we found that infection differed substantially between tick organs. In addition, while adult female ticks were infected, we did not observe C. burnetii in eggs, suggesting that transovarial transmission is not effective. Finally, we detected only a sporadic presence of C. burnetii DNA in tick faeces, but no living bacterium was further isolated in culture assays, suggesting that excretion in faeces is not a common mode of transmission in O. moubata.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 472 ◽  
Author(s):  
Mohammed A. Rohaim ◽  
Muhammad Munir

The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesized avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of AOaV-1 was engineered to express full length spike (S) glycoprotein which is highly neutralizing and a major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of a recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in a cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagations in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Antoine Chabloz ◽  
Jonas V. Schaefer ◽  
Ivona Kozieradzki ◽  
Shane J. F. Cronin ◽  
Daniel Strebinger ◽  
...  

AbstractProtein-based affinity reagents (like antibodies or alternative binding scaffolds) offer wide-ranging applications for basic research and therapeutic approaches. However, whereas small chemical molecules efficiently reach intracellular targets, the delivery of macromolecules into the cytosol of cells remains a major challenge; thus cytosolic applications of protein-based reagents are rather limited. Some pathogenic bacteria have evolved a conserved type III secretion system (T3SS) which allows the delivery of effector proteins into eukaryotic cells. Here, we enhance the T3SS of an avirulent strain of Salmonella typhimurium to reproducibly deliver multiple classes of recombinant proteins into eukaryotic cells. The efficacy of the system is probed with both DARPins and monobodies to functionally inhibit the paradigmatic and largely undruggable RAS signaling pathway. Thus, we develop a bacterial secretion system for potent cytosolic delivery of therapeutic macromolecules.


Biology Open ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. bio053504
Author(s):  
Maria Gravato-Nobre ◽  
Jonathan Hodgkin ◽  
Petros Ligoxygakis

ABSTRACTThe nematode worm Caenorhabditis elegans depends on microbes in decaying vegetation as its food source. To survive in an environment rich in opportunistic pathogens, C. elegans has evolved an epithelial defence system where surface-exposed tissues such as epidermis, pharynx, intestine, vulva and hindgut have the capacity of eliciting appropriate immune defences to acute gut infection. However, it is unclear how the worm responds to chronic intestinal infections. To this end, we have surveyed C. elegans mutants that are involved in inflammation, immunity and longevity to find their phenotypes during chronic infection. Worms that grew in a monoculture of the natural pathogen Microbacterium nematophilum (CBX102 strain) had a reduced lifespan and vigour. This was independent of intestinal colonisation as both CBX102 and the derived avirulent strain UV336 were early persistent colonisers. In contrast, the long-lived daf-2 mutant was resistant to chronic infection, showing reduced colonisation and higher vigour. In fact, UV336 interaction with daf-2 resulted in a host lifespan extension beyond OP50, the Escherichia coli strain used for laboratory C. elegans culture. Longevity and vigour of daf-2 mutants growing on CBX102 was dependent on the FOXO orthologue DAF-16. Our results indicate that the interaction between host genotype and strain-specific bacteria determines longevity and health for C. elegans.


Sign in / Sign up

Export Citation Format

Share Document