scholarly journals Specific transcription of preformed nucleoprotein complexes, containing the adenovirus major late promoter, with a chromatographic fraction containing RNA polymerase II.

1985 ◽  
Vol 82 (20) ◽  
pp. 6769-6773
Author(s):  
R. J. Hellwig ◽  
S. N. Sinha ◽  
S. K. Niyogi
1991 ◽  
Vol 11 (3) ◽  
pp. 1195-1206 ◽  
Author(s):  
E Bengal ◽  
O Flores ◽  
A Krauskopf ◽  
D Reinberg ◽  
Y Aloni

We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.


1991 ◽  
Vol 11 (3) ◽  
pp. 1195-1206 ◽  
Author(s):  
E Bengal ◽  
O Flores ◽  
A Krauskopf ◽  
D Reinberg ◽  
Y Aloni

We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.


1988 ◽  
Vol 8 (4) ◽  
pp. 1602-1613 ◽  
Author(s):  
Z F Burton ◽  
M Killeen ◽  
M Sopta ◽  
L G Ortolan ◽  
J Greenblatt

We have previously shown by affinity chromatography that RAP30 and RAP74 are the mammalian proteins that have the highest affinity for RNA polymerase II. Here we show that RAP30 binds to RAP74 and that the RAP30-RAP74 complex (RAP30/74) is required for accurate initiation by RNA polymerase II. RAP30/74 is required for accurate transcription from the following promoters: the adenovirus major late promoter, the long terminal repeat of human immunodeficiency virus, P2 of the human c-myc gene, the mouse beta maj-globin promoter (all of which have TATA boxes), and the mouse dihydrofolate reductase promoter (which lacks a TATA box). RAP30/74 is not required for initiation by RNA polymerase III at the adenovirus virus-associated RNA promoters. Therefore, RAP30/74 is a general initiation factor that binds to RNA polymerase II.


1988 ◽  
Vol 8 (4) ◽  
pp. 1602-1613 ◽  
Author(s):  
Z F Burton ◽  
M Killeen ◽  
M Sopta ◽  
L G Ortolan ◽  
J Greenblatt

We have previously shown by affinity chromatography that RAP30 and RAP74 are the mammalian proteins that have the highest affinity for RNA polymerase II. Here we show that RAP30 binds to RAP74 and that the RAP30-RAP74 complex (RAP30/74) is required for accurate initiation by RNA polymerase II. RAP30/74 is required for accurate transcription from the following promoters: the adenovirus major late promoter, the long terminal repeat of human immunodeficiency virus, P2 of the human c-myc gene, the mouse beta maj-globin promoter (all of which have TATA boxes), and the mouse dihydrofolate reductase promoter (which lacks a TATA box). RAP30/74 is not required for initiation by RNA polymerase III at the adenovirus virus-associated RNA promoters. Therefore, RAP30/74 is a general initiation factor that binds to RNA polymerase II.


1983 ◽  
Vol 3 (10) ◽  
pp. 1687-1693
Author(s):  
G W Hatfield ◽  
J A Sharp ◽  
M Rosenberg

Kinetic analyses of runoff transcription in a cell-free eucaryotic transcription system revealed that the bacteriophage lambda 4S RNA terminator caused human RNA polymerase II to pause on the template and partially terminate transcription of transcripts initiated by the adenovirus 2 major late promoter. Analogous to the procaryotic RNA polymerase, the eucaryotic enzyme terminated just beyond the guanine-plus-cytosine-rich region of dyad symmetry in the terminator sequence. These results suggest that the eucaryotic RNA polymerase II may respond to transcription termination sequences similar to those used by the procaryotic enzyme. However, similar templates containing lambda tint or lambda tR1 terminators did not elicit pausing or termination, suggesting that other features, such as sequence specificity, may also be involved.


1990 ◽  
Vol 10 (10) ◽  
pp. 5562-5564
Author(s):  
S Buratowski ◽  
P A Sharp

RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.


Sign in / Sign up

Export Citation Format

Share Document