Acanthamoeba castellanii RNA polymerase II transcription in vitro: accurate initiation at the adenovirus major late promoter

Gene ◽  
1992 ◽  
Vol 120 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Feng Liu ◽  
Erik Bateman
1983 ◽  
Vol 3 (10) ◽  
pp. 1687-1693
Author(s):  
G W Hatfield ◽  
J A Sharp ◽  
M Rosenberg

Kinetic analyses of runoff transcription in a cell-free eucaryotic transcription system revealed that the bacteriophage lambda 4S RNA terminator caused human RNA polymerase II to pause on the template and partially terminate transcription of transcripts initiated by the adenovirus 2 major late promoter. Analogous to the procaryotic RNA polymerase, the eucaryotic enzyme terminated just beyond the guanine-plus-cytosine-rich region of dyad symmetry in the terminator sequence. These results suggest that the eucaryotic RNA polymerase II may respond to transcription termination sequences similar to those used by the procaryotic enzyme. However, similar templates containing lambda tint or lambda tR1 terminators did not elicit pausing or termination, suggesting that other features, such as sequence specificity, may also be involved.


1990 ◽  
Vol 10 (10) ◽  
pp. 5562-5564
Author(s):  
S Buratowski ◽  
P A Sharp

RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.


Author(s):  
Neal F. Lue ◽  
Peter M. Flanagan ◽  
Raymond J. Kelleher ◽  
Aled M. Edwards ◽  
Roger D. Kornberg

1983 ◽  
Vol 3 (10) ◽  
pp. 1687-1693 ◽  
Author(s):  
G W Hatfield ◽  
J A Sharp ◽  
M Rosenberg

Kinetic analyses of runoff transcription in a cell-free eucaryotic transcription system revealed that the bacteriophage lambda 4S RNA terminator caused human RNA polymerase II to pause on the template and partially terminate transcription of transcripts initiated by the adenovirus 2 major late promoter. Analogous to the procaryotic RNA polymerase, the eucaryotic enzyme terminated just beyond the guanine-plus-cytosine-rich region of dyad symmetry in the terminator sequence. These results suggest that the eucaryotic RNA polymerase II may respond to transcription termination sequences similar to those used by the procaryotic enzyme. However, similar templates containing lambda tint or lambda tR1 terminators did not elicit pausing or termination, suggesting that other features, such as sequence specificity, may also be involved.


1991 ◽  
Vol 11 (3) ◽  
pp. 1195-1206 ◽  
Author(s):  
E Bengal ◽  
O Flores ◽  
A Krauskopf ◽  
D Reinberg ◽  
Y Aloni

We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.


1996 ◽  
Vol 16 (5) ◽  
pp. 2350-2360 ◽  
Author(s):  
E F Michelotti ◽  
G A Michelotti ◽  
A I Aronsohn ◽  
D Levens

The CT element is a positively acting homopyrimidine tract upstream of the c-myc gene to which the well-characterized transcription factor Spl and heterogeneous nuclear ribonucleoprotein (hnRNP) K, a less well-characterized protein associated with hnRNP complexes, have previously been shown to bind. The present work demonstrates that both of these molecules contribute to CT element-activated transcription in vitro. The pyrimidine-rich strand of the CT element both bound to hnRNP K and competitively inhibited transcription in vitro, suggesting a role for hnRNP K in activating transcription through this single-stranded sequence. Direct addition of recombinant hnRNP K to reaction mixtures programmed with templates bearing single-stranded CT elements increased specific RNA synthesis. If hnRNP K is a transcription factor, then interactions with the RNA polymerase II transcription apparatus are predicted. Affinity columns charged with recombinant hnRNP K specifically bind a component(s) necessary for transcription activation. The depleted factors were biochemically complemented by a crude TFIID phosphocellulose fraction, indicating that hnRNP K might interact with the TATA-binding protein (TBP)-TBP-associated factor complex. Coimmunoprecipitation of a complex formed in vivo between hnRNP K and epitope-tagged TBP as well as binding in vitro between recombinant proteins demonstrated a protein-protein interaction between TBP and hnRNP K. Furthermore, when the two proteins were overexpressed in vivo, transcription from a CT element-dependent reporter was synergistically activated. These data indicate that hnRNP K binds to a specific cis element, interacts with the RNA polymerase II transcription machinery, and stimulates transcription and thus has all of the properties of a transcription factor.


Sign in / Sign up

Export Citation Format

Share Document