late transcription
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 6)

H-INDEX

32
(FIVE YEARS 0)

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1937
Author(s):  
Dana May ◽  
Anna Bellizzi ◽  
Workineh Kassa ◽  
John M. Cipriaso ◽  
Maurizio Caocci ◽  
...  

Polyomavirus JC (JCPyV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV infection is very common in childhood and, under conditions of severe immunosuppression, JCPyV may reactivate to cause PML. JC viral proteins expression is regulated by the JCPyV non-coding control region (NCCR), which contains binding sites for cellular transcriptional factors which regulate JCPyV transcription. Our earlier studies suggest that JCPyV reactivation occurs within glial cells due to cytokines such as TNF-α which stimulate viral gene expression. In this study, we examined interferon-α (IFNα) or β (IFNβ) which have a negative effect on JCPyV transcriptional regulation. We also showed that these interferons induce the endogenous liver inhibitory protein (LIP), an isoform of CAAT/enhancer binding protein beta (C/EBPβ). Treatment of glial cell line with interferons increases the endogenous level of C/EBPβ-LIP. Furthermore, we showed that the negative regulatory role of the interferons in JCPyV early and late transcription and viral replication is more pronounced in the presence of C/EBPβ-LIP. Knockdown of C/EBPβ-LIP by shRNA reverse the inhibitory effect on JCPyV viral replication. Therefore, IFNα and IFNβ negatively regulate JCPyV through induction of C/EBPβ-LIP, which together with other cellular transcriptional factors may control the balance between JCPyV latency and activation.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009796
Author(s):  
Ming Li ◽  
Qiaolin Hu ◽  
Geoffrey Collins ◽  
Mrutyunjaya Parida ◽  
Christopher B. Ball ◽  
...  

Beta- and gammaherpesviruses late transcription factors (LTFs) target viral promoters containing a TATT sequence to drive transcription after viral DNA replication has begun. Human cytomegalovirus (HCMV), a betaherpesvirus, uses the UL87 LTF to bind both TATT and host RNA polymerase II (Pol II), whereas the UL79 LTF has been suggested to drive productive elongation. Here we apply integrated functional genomics (dTag system, PRO-Seq, ChIP-Seq, and promoter function assays) to uncover the contribution of diversity in LTF target sequences in determining degree and scope to which LTFs drive viral transcription. We characterize the DNA sequence patterns in LTF-responsive and -unresponsive promoter populations, determine where and when Pol II initiates transcription, identify sites of LTF binding genome-wide, and quantify change in nascent transcripts from individual promoters in relation to core promoter sequences, LTF loss, stage of infection, and viral DNA replication. We find that HCMV UL79 and UL87 LTFs function concordantly to initiate transcription from over half of all active viral promoters in late infection, while not appreciably affecting host transcription. Both LTFs act on and bind to viral early-late and late kinetic-class promoters. Over one-third of these core promoters lack the TATT and instead have a TATAT, TGTT, or YRYT. The TATT and non-TATT motifs are part of a sequence block with a sequence code that correlates with promoter transcription level. LTF occupancy of a TATATA palindrome shared by back-to-back promoters is linked to bidirectional transcription. We conclude that diversity in LTF target sequences shapes the LTF-transformative program that drives the viral early-to-late transcription switch.


2021 ◽  
Author(s):  
Margaret B Fleming ◽  
Eric L Patterson ◽  
Christina Walters

This study investigates alive to dead signals in seeds that aged during cool, dry storage. Signals may invoke abrupt, lethal metabolic pathways or reflect effects of accumulated small injuries which impair recovery from life in the dry state. Cohorts of soybean (Glycine max cv. Williams 82) seeds were stored for 3, 19 and 22 years. Transcriptomes of dry embryonic axes and axes 24 hours after imbibition (HAI) were sequenced to determine gene expression patterns. These cohorts showed about <2, 40, and ~99% mortality, respectively, in response to storage and aging. A total of 19,340 genes were significantly differentially expressed (SDE) in imbibed axes compared to dry axes. Gene expression patterns of imbibed axes clustered into three groups that represented high, low, and no germination potential (GP). There were 17,360 SDE genes in high-GP axes and 4,892 SDE genes, mostly upregulated, in no-GP axes. Transcriptomes of no-GP axes were similar to healthy axes at 3 HAI. Slow transcription, not transcription errors or novel expression pathways, portends failure to transition from seed to seedling. We conclude that the signature of death in dry aged seeds arises from metabolism that is too little and too late.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1320
Author(s):  
Maria Kornienko ◽  
Gleb Fisunov ◽  
Dmitry Bespiatykh ◽  
Nikita Kuptsov ◽  
Roman Gorodnichev ◽  
...  

The Twort-like myoviruses (Kayvirus genus) of S. aureus are promising agents for bacteriophage therapy due to a broad host range and high killing activity against clinical isolates. This work improves the current understanding of the phage infection physiology by transcriptome analysis. The expression profiles of a typical member of the Kayvirus genus (vB_SauM-515A1) were obtained at three time-points post-infection using RNA sequencing. A total of 35 transcription units comprising 238 ORFs were established. The sequences for 58 early and 12 late promoters were identified in the phage genome. The early promoters represent the strong sigma-70 promoters consensus sequence and control the host-dependent expression of 26 transcription units (81% of genes). The late promoters exclusively controlled the expression of four transcription units, while the transcription of the other five units was directed by both types of promoters. The characteristic features of late promoters were long -10 box of TGTTATATTA consensus sequence and the absence of -35 boxes. The data obtained are also of general interest, demonstrating a strategy of the phage genome expression with a broad overlap of the early and late transcription phases without any middle transcription, which is unusual for the large phage genomes (>100 kbp).


2019 ◽  
Author(s):  
Divya Nandakumar ◽  
Britt Glaunsinger

AbstractThe structural proteins of DNA viruses are generally encoded by late genes, whose expression relies on recruitment of the host transcriptional machinery only after the onset of viral genome replication. β and γ-herpesviruses encode a unique six-member viral pre-initiation complex (vPIC) for this purpose, although how the vPIC directs specific activation of late genes remains largely unknown. The specificity underlying late transcription is particularly notable given that late gene promoters are unusually small, with a modified TATA-box being the only recognizable element. Here, we explored the basis for this specificity using an integrative approach to evaluate vPIC-dependent gene expression combined with promoter occupancy during Kaposi’s sarcoma-associated herpesvirus (KSHV) infection. This approach distinguished the direct and indirect targets of the vPIC, ultimately revealing a novel promoter motif critical for KSHV vPIC binding. Additionally, we found that the KSHV vPIC component ORF24 is required for efficient viral DNA replication. Together, these results identify an elusive element that contributes to vPIC specificity and suggest novel links between KSHV DNA replication and late transcription.Author summaryGene expression in DNA viruses often occurs in temporal waves, with expression of essential structural proteins occurring late in infection, after viral genome replication has begun. Strategies underlying expression of these viral late genes are often sophisticated; for example, the β- and γ-herpesviruses encode a six-component viral complex that directs late gene transcription, largely by unknown mechanisms. Here, we evaluated how this complex specifically recognizes late promoters during infection with the oncogenic human γ-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV). We found that one of the components of the late transcription complex was required for robust viral DNA replication, suggesting new links between KSHV replication and transcription. Combined measurements of late gene expression and promoter occupancy then revealed which KHSV genes are directly controlled by the late gene transcription complex, leading to identification of a key new regulatory element in KSHV late promoters. Together, these data help explain how the late gene transcription complex is able to bind seemingly minimal promoters with high specificity, ensuring robust expression of viral factors necessary for assembly of progeny virions.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 705 ◽  
Author(s):  
Lia M. Godinho ◽  
Mehdi El Sadek Fadel ◽  
Céline Monniot ◽  
Lina Jakutyte ◽  
Isabelle Auzat ◽  
...  

Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Meera Ajeet Kumar ◽  
Karine Kasti ◽  
Lata Balakrishnan ◽  
Barry Milavetz

ABSTRACTSimian virus 40 (SV40) exists as chromatin throughout its life cycle and undergoes typical epigenetic regulation mediated by changes in nucleosome location and associated histone modifications. In order to investigate the role of epigenetic regulation during the encapsidation of late-stage minichromosomes into virions, we mapped the locations of nucleosomes containing acetylated or methylated lysines in the histone tails of H3 and H4 present in the chromatin from 48-h-postinfection minichromosomes and disrupted virions. In minichromosomes obtained late in infection, nucleosomes were found carrying various histone modifications primarily in the regulatory region, with a major nucleosome located within the enhancer and other nucleosomes at the early and late transcriptional start sites. The nucleosome found in the enhancer would be expected to repress early transcription by blocking access to part of the SP1 binding sites and the left side of the enhancer in late-stage minichromosomes while also allowing late transcription. In chromatin from virions, the principal nucleosome located in the enhancer was shifted ∼70 bases in the late direction from what was found in minichromosomes, and the level of modified histones was increased throughout the genome. The shifting of the enhancer-associated nucleosome to the late side would effectively serve as a switch to relieve the repression of early transcription found in late minichromosomes while likely also repressing late transcription by blocking access to necessary regulatory sequences. This epigenetic switch appeared to occur during the final stage of virion formation.IMPORTANCEFor a virus to complete infection, it must produce a new virus particle in which the genome is able to support a new infection. This is particularly important for viruses like simian virus 40 (SV40), which exist as chromatin throughout their life cycles, since chromatin structure plays a major role in the regulation of the life cycle. In order to determine the role of SV40 chromatin structure late in infection, we mapped the locations of nucleosomes and their histone tail modifications in SV40 minichromosomes and in the SV40 chromatin found in virions using chromatin immunoprecipitation-DNA sequencing (ChIP-Seq). We have identified a novel viral transcriptional control mechanism in which a nucleosome found in the regulatory region of the SV40 minichromosome is directed to slide during the formation of the virus particle, exposing transcription factor binding sites required for early transcription that were previously blocked by the presence of the nucleosome.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 595 ◽  
Author(s):  
Ling Zhang ◽  
David Simpson ◽  
Lynn McMullen ◽  
Michael Gänzle

Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR’, thus the sequence diversity of the region between Q and stx, here termed the pR’ region, may affect Stx toxin production. Here, we compared the gene structure of the pR’ region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR’ region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR’ region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR’ regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR’ region plays an important role in determining the level of toxin induction.


2018 ◽  
Author(s):  
Meera Ajeet Kumar ◽  
Karine Kasti ◽  
Lata Balakrishnan ◽  
Barry Milavetz

AbstractSimian Virus 40 (SV40) exists as chromatin throughout its life cycle, and undergoes typical epigenetic regulation mediated by changes in nucleosome location and associated histone modifications. In order to investigate the role of epigenetic regulation during the encapsidation of late stage minichromosomes into virions, we have mapped the location of nucleosomes containing acetylated or methylated lysines in the histone tails of H3 and H4 present in the chromatin from 48-hour post-infection minichromosomes and disrupted virions. In minichromosomes obtained late in infection, nucleosomes were found carrying various histone modifications primarily in the regulatory region with a major nucleosome located within the enhancer and other nucleosomes at the early and late transcriptional start sites. The nucleosome found in the enhancer would be expected to repress early transcription by blocking access to part of the SP1 binding sites and the left side of the enhancer in late stage minichromosomes while also allowing late transcription. In chromatin from virions, the principal nucleosome located in the enhancer was shifted ~ 70 bases in the late direction from what was found in minichromosomes and the level of modified histones was increased throughout the genome. The shifting of the enhancer-associated nucleosome to the late side would effectively serve as a switch to relieve the repression of early transcription found in late minichromosomes while likely also repressing late transcription by blocking access to necessary regulatory sequences. This epigenetic switch appeared to occur during the final stage of virion formation.


Sign in / Sign up

Export Citation Format

Share Document