scholarly journals E1 protein of human papillomavirus type 1a is sufficient for initiation of viral DNA replication.

1994 ◽  
Vol 91 (20) ◽  
pp. 9597-9601 ◽  
Author(s):  
V. Gopalakrishnan ◽  
S. A. Khan
Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 321
Author(s):  
Ashley N. Della Fera ◽  
Alix Warburton ◽  
Tami L. Coursey ◽  
Simran Khurana ◽  
Alison A. McBride

Persistent infection with oncogenic human papillomavirus (HPV) types is responsible for ~5% of human cancers. The HPV infectious cycle can sustain long-term infection in stratified epithelia because viral DNA is maintained as low copy number extrachromosomal plasmids in the dividing basal cells of a lesion, while progeny viral genomes are amplified to large numbers in differentiated superficial cells. The viral E1 and E2 proteins initiate viral DNA replication and maintain and partition viral genomes, in concert with the cellular replication machinery. Additionally, the E5, E6, and E7 proteins are required to evade host immune responses and to produce a cellular environment that supports viral DNA replication. An unfortunate consequence of the manipulation of cellular proliferation and differentiation is that cells become at high risk for carcinogenesis.


2015 ◽  
Vol 89 (9) ◽  
pp. 4980-4991 ◽  
Author(s):  
Elaine J. Gauson ◽  
Mary M. Donaldson ◽  
Edward S. Dornan ◽  
Xu Wang ◽  
Molly Bristol ◽  
...  

ABSTRACTTo replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination.IMPORTANCEHuman papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease burden on the current, and future, generations. Targeting viral DNA replication that is mediated by two viral proteins, E1 and E2, in association with cellular proteins such as TopBP1 and Brd4 would have therapeutic benefits. This report suggests a role for these cellular proteins in the initiation of viral DNA replication by HPV16 E1-E2 but not for continuing replication. This is important if viral replication is to be effectively targeted; we need to understand the viral and cellular proteins required at each phase of viral DNA replication so that it can be effectively disrupted.


2010 ◽  
Vol 84 (24) ◽  
pp. 13036-13039 ◽  
Author(s):  
Paramananda Saikia ◽  
Volker Fensterl ◽  
Ganes C. Sen

ABSTRACT The interferon (IFN)-induced protein P56 inhibits human papillomavirus (HPV) DNA replication by binding to HPV E1, which has several distinct functions in initiating viral DNA replication. Here, we determined that P56 inhibited HPV type 18 (HPV18) E1's DNA helicase activity, E2 binding, and HPV Ori sequence-specific DNA binding but not nonspecific DNA binding. We observed that deletion of a single amino acid, F399, produced an E1 mutant that could not bind P56. This E1 mutant retained its ability to support Ori DNA replication, but this activity was not inhibited by IFN, demonstrating that P56 is the principal executor of the anti-HPV action of IFN.


2012 ◽  
Vol 86 (23) ◽  
pp. 12806-12815 ◽  
Author(s):  
M. M. Donaldson ◽  
L. J. Mackintosh ◽  
J. M. Bodily ◽  
E. S. Dornan ◽  
L. A. Laimins ◽  
...  

2010 ◽  
Vol 84 (22) ◽  
pp. 11747-11760 ◽  
Author(s):  
Amélie Fradet-Turcotte ◽  
Cary Moody ◽  
Laimonis A. Laimins ◽  
Jacques Archambault

ABSTRACT The initiator protein E1 from human papillomavirus (HPV) is a helicase essential for replication of the viral genome. E1 contains three functional domains: a C-terminal enzymatic domain that has ATPase/helicase activity, a central DNA-binding domain that recognizes specific sequences in the origin of replication, and a N-terminal region necessary for viral DNA replication in vivo but dispensable in vitro. This N-terminal portion of E1 contains a conserved nuclear export signal (NES) whose function in the viral life cycle remains unclear. In this study, we provide evidence that nuclear export of HPV31 E1 is inhibited by cyclin E/A-Cdk2 phosphorylation of two serines residues, S92 and S106, located near and within the E1 NES, respectively. Using E1 mutant proteins that are confined to the nucleus, we determined that nuclear export of E1 is not essential for transient viral DNA replication but is important for the long-term maintenance of the HPV episome in undifferentiated keratinocytes. The findings that E1 nuclear export is not required for viral DNA replication but needed for genome maintenance over multiple cell divisions raised the possibility that continuous nuclear accumulation of E1 is detrimental to cellular growth. In support of this possibility, we observed that nuclear accumulation of E1 dramatically reduces cellular proliferation by delaying cell cycle progression in S phase. On the basis of these results, we propose that nuclear export of E1 is required, at least in part, to limit accumulation of this viral helicase in the nucleus in order to prevent its detrimental effect on cellular proliferation.


2006 ◽  
Vol 81 (1) ◽  
pp. 384-394 ◽  
Author(s):  
Chiung-Yueh Hsu ◽  
Francisca Mechali ◽  
Catherine Bonne-Andrea

ABSTRACT The papillomavirus E1 protein is essential for the initiation of viral replication. We previously showed that the bovine papillomavirus E1 protein is unstable and becomes resistant to ubiquitin-mediated degradation when tightly bound to cyclin E-cyclin-dependent kinase 2 (Cdk2) before the start of DNA synthesis. However, neither the protection nor the targeted degradation of E1 appears to depend on its phosphorylation by Cdk. Here, we report that Cdk phosphorylation of E1 is also not a prerequisite for the initiation of viral DNA replication either in vitro or in vivo. Nevertheless, we found that phosphorylation of one Cdk site, Ser283, abrogates E1 replicative activity only in a cellular context. We show that this site-specific phosphorylation of E1 drives its export from the nucleus and promotes its continuous nucleocytoplasmic shuttling. In addition, we find that E1 shuttling occurs in S phase, when cyclin A-Cdk2 is activated. E1 interacts with the active cyclin A-Cdk2 complex and is phosphorylated on Ser283 by this kinase. These data suggest that the phosphorylation of E1 on Ser283 is a negative regulatory event that is involved in preventing the amplification of viral DNA during S phase. This finding reveals a novel facet of E1 regulation that could account for the variations of the viral replication capacity during different cell cycle phases, as well as in different stages of the viral cycle.


2015 ◽  
Vol 89 (12) ◽  
pp. 6227-6239 ◽  
Author(s):  
David Gagnon ◽  
Michaël Lehoux ◽  
Jacques Archambault

ABSTRACTThe E1 helicase from anogenital human papillomavirus (HPV) types interacts with the cellular WD repeat-containing protein UAF1 in complex with the deubiquitinating enzyme USP1, USP12, or USP46. This interaction stimulates viral DNA replication and is required for maintenance of the viral episome in keratinocytes. E1 associates with UAF1 through a short UAF1-binding site (UBS) located within the N-terminal 40 residues of the protein. Here, we investigated if the E1 UBS could be replaced by the analogous domain from an unrelated protein, the pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1). We found that PHLPP1 and E1 interact with UAF1 in a mutually exclusive manner and mapped the minimal PHLPP1 UBS (PUBS) to a 100-amino-acid region sufficient for assembly into UAF1-USP complexes. Similarly to the E1 UBS, overexpression of PUBS intransinhibited HPV DNA replication, albeit less efficiently. Characterization of a PHLPP1-E1 chimeric helicase revealed that PUBS could partially substitute for the E1 UBS in enhancing viral DNA replication and that the stimulatory effect of PUBS likely involves recruitment of UAF1-USP complexes, as it was abolished by mutations that weaken UAF1-binding and by overexpression of catalytically inactive USPs. Although functionally similar to the E1 UBS, PUBS is larger in size and requires both the WD repeat region and C-terminal ubiquitin-like domain of UAF1 for interaction, in contrast to E1, which does not contact the latter. Overall, this comparison of two heterologous UBSs indicates that these domains function as transferable protein interaction modules and provide further evidence that the association of E1 with UAF1-containing deubiquitinating complexes stimulates HPV DNA replication.IMPORTANCEThe E1 protein from anogenital HPV types interacts with the UAF1-associated deubiquitinating enzymes USP1, USP12, and USP46 to stimulate replication of the viral genome. Little is known about the molecular nature of the E1-UAF1 interaction and, more generally, how UAF1-USP complexes recognize their substrate proteins. To address this question, we characterized the UAF1-binding site (UBS) of PHLPP1, a protein unrelated to E1. Using a PHLPP1-E1 chimeric helicase, we show that the PHLPP1 UBS (PUBS) can partially substitute for the E1 UBS in stimulating HPV DNA replication. This stimulation required conserved sequences in PUBS that meditate its interaction with UAF1, including a motif common to the E1 UBS. These results indicate that UAF1-binding sequences function as transferable protein interaction modules and provide further evidence that UAF1-USP complexes stimulate HPV DNA replication.


1998 ◽  
Vol 72 (1) ◽  
pp. 796-801 ◽  
Author(s):  
Maureen C. Ferran ◽  
Alison A. McBride

ABSTRACT The bovine papillomavirus type 1 E1 protein is important for viral DNA replication and transcriptional repression. It has been proposed that the full-length E1 protein consists of a small N-terminal and a larger C-terminal domain. In this study, it is shown that an E1 polypeptide containing residues 132 to 605 (which represents the C-terminal domain) is able to support transient viral DNA replication, although at a level lower than that supported by the wild-type protein. This domain can also repress E2-mediated transactivation from the P89 promoter as well as the wild-type E1 protein can.


2010 ◽  
Vol 34 (8) ◽  
pp. S60-S60
Author(s):  
Yuning Sun ◽  
Fang Li ◽  
Jianming Qiu ◽  
Xiaohong Lu

Sign in / Sign up

Export Citation Format

Share Document