scholarly journals A hepatic lipase (LIPC) allele associated with high plasma concentrations of high density lipoprotein cholesterol

1997 ◽  
Vol 94 (9) ◽  
pp. 4532-4537 ◽  
Author(s):  
R. Guerra ◽  
J. Wang ◽  
S. M. Grundy ◽  
J. C. Cohen
Genetics ◽  
1989 ◽  
Vol 122 (1) ◽  
pp. 163-168 ◽  
Author(s):  
B Paigen ◽  
M N Nesbitt ◽  
D Mitchell ◽  
D Albee ◽  
R C LeBoeuf

Abstract Strain C57BL/6J and A/J differ at two genes determining atherosclerosis susceptibility. The first gene, Ath-1, was described earlier and this report characterizes Ath-2. The alleles at Ath-2 are r for resistance and s for susceptibility to atherosclerosis. The resistant phenotype in female mice is characterized by high plasma high density lipoprotein-cholesterol levels (74 mg/dl +/- SEM 2) and very few lesions/mouse after 14 weeks of consumption of an atherogenic diet (0.1 +/- SEM 0.1 in a predetermined region of the aorta). The susceptible phenotype in female mice is characterized by low levels of high density lipoprotein-cholesterol (35 mg/dl +/- SEM 1) and 1.2 lesions/mouse +/- SEM 0.2 in the same region of the aorta. In Ath-2 heterozygotes, resistance is dominant to susceptibility. Recombinant inbred strains derived from C57BL/6 and A were characterized for Apoa 1, Apoa 2 and susceptibility to atherosclerosis. Ath-1 and Ath-2 interact with each other so that resistant alleles at either locus confer a resistant phenotype to the animal. The map position of Ath-2 is not known, but Ath-2 does not map near genes determining the apolipoproteins for A-I, A-II, or E.


1994 ◽  
Vol 40 (12) ◽  
pp. 2313-2316 ◽  
Author(s):  
D S Sheriff ◽  
M el Fakhri ◽  
K Ghwarsha

Abstract Genetic deficiencies of cholesteryl ester transport protein (CETP) and hepatic lipase activities have been associated with hyperalpha-lipoproteinemias. Here we present a family of 11 members, of which 9, including the father, mother, 5 sons, and 2 daughters, show a marked increase in high-density lipoprotein (HDL) cholesterol alone with low plasma concentrations of triglycerides. Analyses of lecithin:cholesterol acyltransferase (LCAT) activity, cholesteryl ester transfer between HDL fractions, hepatic lipase (HL) activity, and lipoprotein lipase (LPL) activity in these cases showed that a decrease in the heparin-releasable HL activity was the possible cause of the marked increase of HDL2 fractions observed in nine of them. Such a defect in HL activity could significantly affect HDL metabolism in particular and lipoprotein metabolism in general. Evidently, a marked increase in serum total cholesterol due to abnormal metabolism of HDL cholesterol, separate from known causes of altered low-density lipoprotein cholesterol metabolism, e.g., a clearance or a receptor defect, is not uncommon. The coordinated action of HL, LCAT, LPL, and CETP may be essential for normal metabolism of plasma lipoproteins.


Sign in / Sign up

Export Citation Format

Share Document