scholarly journals Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity

1998 ◽  
Vol 95 (4) ◽  
pp. 1852-1857 ◽  
Author(s):  
V. G. Kimonides ◽  
N. H. Khatibi ◽  
C. N. Svendsen ◽  
M. V. Sofroniew ◽  
J. Herbert
1987 ◽  
Vol 58 (2) ◽  
pp. 251-266 ◽  
Author(s):  
J. F. MacDonald ◽  
Z. Miljkovic ◽  
P. Pennefather

1. Mouse hippocampal neurons grown in dissociated cell culture were patch clamped using a whole cell voltage clamp (discontinuous switching clamp) technique. The currents generated by pressure applications of excitatory amino acids were studied over a wide range of holding potentials, and current-voltage curves were plotted. Excitatory amino acids that activated the N-methyl-D-aspartic acid (NMDA) receptor demonstrated some degree of desensitization with repeated applications, whereas the currents observed in response to kainic acid (KAI) did not. Desensitization could be minimized by keeping the frequency of application sufficiently low (i.e., less than 0.1 Hz). 2. The short-acting dissociative anaesthetic, ketamine (2–50 microM), selectively blocked L-aspartic acid (L-Asp), NMDA, and L-glutamic acid (L-Glu) currents while sparing those in response to KAI. Therefore, ketamine is a relatively selective blocker of the NMDA response versus that (those) activated by KAI. 3. The block by ketamine of excitatory amino acid currents is highly voltage dependent. Concentrations of ketamine that had little effect on outward current responses at depolarized potentials were quite effective at blocking inward current responses at hyperpolarized potentials. In contrast, DL-2-amino-5-phosphonovaleric acid (APV) was equally effective at blocking both inward and outward currents (voltage independent). The voltage dependence of ketamine (a positively charged molecule) could be accounted for if ketamine blocked the NMDA response by binding to a site that experienced 55% of the membrane field. 4. In the presence of ketamine, peak inward currents evoked by repeated applications of NMDA, L-Asp, or L-Glu progressively declined to a steady-state level of block (use-dependent block). This decrement occurred at frequencies much lower than those that were employed to demonstrate desensitization (in the absence of ketamine). Moving the membrane potential to depolarized values did not, in itself, relieve the ketamine block. However, if the appropriate excitatory amino acid (L-Asp, NMDA, L-Glu) was applied during the period of depolarization, a relief of the block could be demonstrated. No recovery from the blockade occurred with periods of rest (no amino acid application) as long as 5 min. Furthermore, no recovery was observed even when ketamine was washed out of the bathing solution until the appropriate agonist was applied. Thus recovery from blockade, like development of blockade, was use dependent.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 54 (3) ◽  
pp. 701-713 ◽  
Author(s):  
S. M. Rothman ◽  
M. Samaie

Cultures of dissociated rat hippocampal neurons were used to study the physiology and pharmacology of excitatory synaptic transmission. Rat hippocampal neurons depolarized when they were exposed to the excitatory transmitter candidates, glutamate (Glu) and aspartate (Asp), as well as to the pure excitatory amino acid agonists, N-methyl-D-aspartate (NMDA) and kainate (KA). Quisqualate (QUIS) produced responses in about two-thirds of these cells. Glu responses were much more effectively blocked by the excitatory amino acid antagonists cis-2,3-piperidine dicarboxylic acid (PDA) and gamma-D-glutamylglycine (DGG) than by D-2-amino-5-phosphonovaleric acid (APV) or D-alpha-aminoadipic acid (DAA). Asp depolarizations were depressed by all four antagonists. Monosynaptic excitatory postsynaptic potentials (EPSPs) were only decreased by PDA and DGG. Postsynaptic responses to both Glu and Asp were very voltage dependent, decreasing as the membrane potential was hyperpolarized up to 70 mV below resting levels. The EPSP, however, increased linearly in the hyperpolarized range. NMDA responses were also voltage dependent, while KA and QUIS responses behaved like EPSPs. DGG very effectively blocked KA, but not QUIS, depolarizations. APV, which only partially depressed Glu responses, markedly diminished their voltage sensitivity. These results all suggest that EPSPs in this preparation are produced by Glu acting at KA-type synaptic receptors. Exogenous Glu probably acts at both synaptic KA receptors and extrasynaptic NMDA receptors, which explains why it produces a voltage-dependent response different from the EPSP.


2003 ◽  
Vol 25 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Byung-Soo Koo ◽  
Hyun-Guk An ◽  
Sung-Kwon Moon ◽  
Young-Choon Lee ◽  
Hyung-Min Kim ◽  
...  

1990 ◽  
Vol 95 (5) ◽  
pp. 837-866 ◽  
Author(s):  
I A Silver ◽  
M Erecińska

Changes in intra- and extracellular free calcium concentration were evaluated with ion-selective microelectrodes during periods of anoxia and ischemia in three different regions of intact rat brain. Recordings stable for at least 2 min and in most cases for 4-6 min were chosen for analysis. Under normoxic conditions neuronal [Ca2+]i varied between less than 10(-8) and 10(-7) M from cell to cell but no systematic regional differences were observed. Elimination of O2 or interruption in blood flow caused, within 30-60 s, slight intracellular alkalinization followed by a small rise in [Ca2+]i, a mild degree of hyperpolarization, and disappearance of electrical activity in the cortex, in that order. It is postulated that a decline in cellular energy levels, as manifested by H+ uptake associated with creatine phosphate hydrolysis, leads to an increase in [Ca2+]i, which activates Ca2(+)-dependent K+ channels and consequently enhances gK. 2-4 min later there was a sudden, large rise in [K+]e, a fall in [Ca2+]e and a rapid elevation of [Ca2+]i. The magnitude of the latter was greatest in a high proportion of hippocampal neurons in area CA1 and some cortical cells, while it was smallest and relatively delayed in thalamic neurons. In the hippocampus area CA1 increases in [Ca2+]i to as much as 6-8 x 10(-4) were observed; some of these could be reversed when O2 or blood flow were restored to normal. Pretreatment of animals with ketamine and MK-801, antagonists of excitatory amino acid transmitters, markedly slowed and decreased the rises in [Ca2+]i. The effects of the two agents were most pronounced in the hippocampus. It is concluded that the receptor-operated channels are largely responsible for Ca2+ entry into certain cells during hypoxia/ischemia. This pathway may be of primary importance in parts of the hippocampus and cortex, regions of the brain that are particularly vulnerable to O2 deprivation and which receive high glutamatergic input and have an abundance of excitatory amino acid receptors.


1996 ◽  
Vol 735 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Massimo Avoli ◽  
Takeki Nagao ◽  
Rüdiger Köhling ◽  
Anne Lücke ◽  
Donatella Mattia

2021 ◽  
Vol 12 ◽  
Author(s):  
Kusumika Saha ◽  
Jae-Won Yang ◽  
Tina Hofmaier ◽  
SanthoshKannan Venkatesan ◽  
Thomas Steinkellner ◽  
...  

The eukaryotic endocytic pathway regulates protein levels available at the plasma membrane by recycling them into specific endosomal compartments. ARFGAP1 is a component of the coat protein I (COPI) complex but it also plays a role in promoting adapter protein-2 (AP-2) mediated endocytosis. The excitatory amino acid transporter-3 (EAAT3) mediates the reuptake of glutamate from the synaptic cleft to achieve rapid termination of synaptic transmission at glutamatergic synapses. In this study, we identified two interacting proteins of EAAT3 by mass spectrometry (MS) ARFGAP1 and ARF6. We explored the role of ARFGAP1 and ARF6 in the endocytosis of EAAT3. Our data revealed that ARFGAP1 plays a role in the recycling of EAAT3, by utilizing its GTPase activating protein (GAP) activity and ARF6 acting as the substrate. ARFGAP1 promotes cargo sorting of EAAT3 via a single phenylalanine residue (F508) located at the C-terminus of the transporter. ARFGAP1-promoted AP-2 dependent endocytosis is abolished upon neutralizing F508. We utilized a heterologous expression system to identify an additional motif in the C-terminus of EAAT3 that regulates its endocytosis. Impairment in endocytosis did not affect somatodendritic targeting in cultured hippocampal neurons. Our findings support a model where endocytosis of EAAT3 is a multifactorial event regulated by ARFGAP1, occurring via the C-terminus of the transporter, and is the first study to examine the role of ARFGAP1 in the endocytosis of a transport protein.


Sign in / Sign up

Export Citation Format

Share Document