sorting motif
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 10)

H-INDEX

27
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sho W Suzuki ◽  
Akihiko Oishi ◽  
Nadia Nikulin ◽  
Jeff R Jorgensen ◽  
Matthew G Baile ◽  
...  

Membrane protein recycling systems are essential for maintenance of the endosome-lysosome system. In yeast, retromer and Snx4 coat complexes are recruited to the endosomal surface where they recognize cargos. They sort cargo and deform the membrane into recycling tubules that bud from the endosome and target to the Golgi. Here, we reveal that the SNX-BAR protein, Mvp1, mediates an endosomal recycling pathway which is mechanistically distinct from the retromer and Snx4 pathways. Mvp1 deforms the endosomal membrane and sorts cargos containing a specific sorting motif into a membrane tubule. Subsequently, Mvp1 recruits the dynamin-like GTPase Vps1 to catalyze membrane scission and release of the recycling tubule. Similarly, SNX8, the human homolog of Mvp1, which has been also implicated in Alzheimer's disease, mediates formation of an endosomal recycling tubule. Thus, we present evidence for a novel endosomal retrieval pathway that is conserved from yeast to humans.


2021 ◽  
Author(s):  
Sönke Rudnik ◽  
Saskia Heybrock ◽  
Paul Saftig ◽  
Markus Damme

The spatio-temporal cellular distribution of lysosomes depends on active transport mainly driven by microtubule-motors such as kinesins and dynein. Different protein complexes attach these molecular motors to their vesicular cargo: TMEM55B, as an integral lysosomal membrane protein, is a component of such a complex mediating the retrograde transport of lysosomes by establishing an interaction with the cytosolic scaffold protein JIP4 and dynein/dynactin. Here we show that TMEM55B and its paralog TMEM55A are S-palmitoylated proteins and lipidated at multiple cysteine-residues. Mutation of all cysteines in TMEM55B prevents S-palmitoylation and causes the retention of the mutated protein in the Golgi-apparatus. Consequently, non-palmitoylated TMEM55B is no longer able to modulate lysosomal positioning and the perinuclear clustering of lysosomes. Additional mutagenesis of the dileucine-based lysosomal sorting motif in non-palmitoylated TMEM55B leads to partial missorting to the plasma membrane instead of retention in the Golgi, implicating a direct effect of S-palmitoylation on the adaptor-protein-dependent sorting of TMEM55B. Our data suggest a critical role of S-palmitoylation on the trafficking of TMEM55B and TMEM55B-dependent lysosomal positioning.


2021 ◽  
Author(s):  
Vivek Reddy Palicharla ◽  
Sun-hee Hwang ◽  
Bandarigoda N. Somatilaka ◽  
Hemant B. Badgandi ◽  
Emilie Legue ◽  
...  

The tubby family protein-TULP3 coordinates with the intraflagellar transport complex-A (IFT-A) in trafficking certain transmembrane proteins to cilia. These transmembrane cargoes have short motifs that are necessary and sufficient for TULP3-mediated trafficking. However, whether TULP3 regulates trafficking of membrane-associated proteins is not well understood. Here we show that TULP3 is required for transport of the atypical GTPase ARL13B into cilia, and for ciliary enrichment of ARL13B-dependent farnesylated and myristoylated proteins. ARL13B transport requires TULP3 binding to IFT-A core but not to phosphoinositides, unlike transmembrane cargo transport that requires binding to both by TULP3. A conserved lysine in TULP3's tubby domain mediates direct ARL13B binding and trafficking of lipidated and transmembrane cargoes. An N-terminal amphipathic helix in ARL13B flanking the palmitoylation site mediates binding to TULP3 and directs trafficking to cilia even in absence of palmitoylation and RVxP sorting motif. Therefore, TULP3 transports transmembrane proteins and ARL13B into cilia by capture of short sequences through a shared tubby domain site.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009463
Author(s):  
Francisco Yanguas ◽  
M.-Henar Valdivieso

Fsv1/Stx8 is a Schizosaccharomyces pombe protein similar to mammalian syntaxin 8. stx8Δ cells are sensitive to salts, and the prevacuolar endosome (PVE) is altered in stx8Δ cells. These defects depend on the SNARE domain, data that confirm the conserved function of syntaxin8 and Stx8 in vesicle fusion at the PVE. Stx8 localizes at the trans-Golgi network (TGN) and the prevacuolar endosome (PVE), and its recycling depends on the retromer component Vps35, and on the sorting nexins Vps5, Vps17, and Snx3. Several experimental approaches demonstrate that Stx8 is a cargo of the Snx3-retromer. Using extensive truncation and alanine scanning mutagenesis, we identified the Stx8 sorting signal. This signal is an IEMeaM sequence that is located in an unstructured protein region, must be distant from the transmembrane (TM) helix, and where the 133I, 134E, 135M, and 138M residues are all essential for recycling. This sorting motif is different from those described for most retromer cargoes, which include aromatic residues, and resembles the sorting motif of mammalian polycystin-2 (PC2). Comparison of Stx8 and PC2 motifs leads to an IEMxx(I/M) consensus. Computer-assisted screening for this and for a loose Ψ(E/D)ΨXXΨ motif (where Ψ is a hydrophobic residue with large aliphatic chain) shows that syntaxin 8 and PC2 homologues from other organisms bear variation of this motif. The phylogeny of the Stx8 sorting motifs from the Schizosaccharomyces species shows that their divergence is similar to that of the genus, showing that they have undergone evolutionary divergence. A preliminary analysis of the motifs in syntaxin 8 and PC2 sequences from various organisms suggests that they might have also undergone evolutionary divergence, what suggests that the presence of almost-identical motifs in Stx8 and PC2 might be a case of convergent evolution.


2021 ◽  
Author(s):  
Sho W. Suzuki ◽  
Akihiko Oishi ◽  
Nadia Nikulin ◽  
Jeff R. Jorgensen ◽  
Matthew G. Baile ◽  
...  

SUMMARYMembrane protein recycling systems are essential for maintenance of the endosome-lysosome system. In yeast, retromer and Snx4 coat complexes are recruited to the endosomal surface where they recognize cargos. They sort cargo and deform the membrane into recycling tubules that bud from the endosome and target to the Golgi. Here, we reveal that the SNX-BAR protein, Mvp1, mediates an endosomal recycling pathway which is mechanistically distinct from the retromer and Snx4 pathways. Mvp1 deforms the endosomal membrane and sorts cargos containing a specific sorting motif into a membrane tubule. Subsequently, Mvp1 recruits the dynamin-like GTPase Vps1 to catalyze membrane scission and release of the recycling tubule. Similarly, SNX8, the human homolog of Mvp1, which has been also implicated in Alzheimer’s disease, mediates formation of an endosomal recycling tubule. Thus, we present evidence for a novel endosomal retrieval pathway that is conserved from yeast to humans.In BriefPX-BAR Mvp1 and dynamin-like GTPase Vps1 drive retromer independent endosomal recycling.HighlightsRetromer- and Snx4-independent endosomal recycling pathway discoveredSNX-BAR Mvp1 and dynamin-like GTPase Vps1 mediate cargo sorting into recycling tubules/vesicles in the absence of retromer functionMvp1 together with retromer and Snx4 complexes contribute to proper endosome functionMvp1 mediated recycling is evolutionary conserved from yeast to humansCharacters: 43,934/45,000 (including spaces and main figure legends but excluding STAR Methods text, supplemental item legends, and References section)


2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Lu Zhu ◽  
Richa Sardana ◽  
Daniel K. Jin ◽  
Scott D. Emr

Rsp5, the Nedd4 family member in yeast, is an E3 ubiquitin ligase involved in numerous cellular processes, many of which require Rsp5 to interact with PY-motif containing adaptor proteins. Here, we show that two paralogous transmembrane Rsp5 adaptors, Rcr1 and Rcr2, are sorted to distinct cellular locations: Rcr1 is a plasma membrane (PM) protein, whereas Rcr2 is sorted to the vacuole. Rcr2 is delivered to the vacuole using ubiquitin as a sorting signal. Rcr1 is delivered to the PM by the exomer complex using a newly uncovered PM sorting motif. Further, we show that Rcr1, but not Rcr2, is up-regulated via the calcineurin/Crz1 signaling pathway. Upon exogenous calcium treatment, Rcr1 ubiquitinates and down-regulates the chitin synthase Chs3. We propose that the PM-anchored Rsp5/Rcr1 ubiquitin ligase-adaptor complex can provide an acute response to degrade unwanted proteins under stress conditions, thereby maintaining cell integrity.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
David Massa López ◽  
Melanie Thelen ◽  
Felix Stahl ◽  
Christian Thiel ◽  
Arne Linhorst ◽  
...  

Lysosomes are major sites for intracellular, acidic hydrolase-mediated proteolysis and cellular degradation. The export of low-molecular-weight catabolic end-products is facilitated by polytopic transmembrane proteins mediating secondary active or passive transport. A number of these lysosomal transporters, however, remain enigmatic. We present a detailed analysis of MFSD1, a hitherto uncharacterized lysosomal family member of the major facilitator superfamily. MFSD1 is not N-glycosylated. It contains a dileucine-based sorting motif needed for its transport to lysosomes. Mfsd1 knockout mice develop splenomegaly and severe liver disease. Proteomics of isolated lysosomes from Mfsd1 knockout mice revealed GLMP as a critical accessory subunit for MFSD1. MFSD1 and GLMP physically interact. GLMP is essential for the maintenance of normal levels of MFSD1 in lysosomes and vice versa. Glmp knockout mice mimic the phenotype of Mfsd1 knockout mice. Our data reveal a tightly linked MFSD1/GLMP lysosomal membrane protein transporter complex.


2019 ◽  
Author(s):  
Kengo Hirao ◽  
Sophie Andrews ◽  
Kimiko Kuroki ◽  
Hiroki Kusaka ◽  
Takashi Tadokoro ◽  
...  

SummaryThe HIV accessory protein Nef plays a major role in establishing and maintaining infection, particularly through immune evasion. Many HIV-2 infected people experience long-term viral control and survival, resembling HIV-1 elite control. HIV-2 Nef has overlapping but also distinct functions from HIV-1 Nef. Here we report the crystal structure of HIV-2 Nef core. The dileucine sorting motif forms a helix bound to neighboring molecules, and moreover, isothermal titration calorimetry demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef, ensuring AP-2 mediated endocytosis for CD3. The highly-conserved C-terminal region forms a α-helix, absent from HIV-1. We further determined the structure of SIV Nef harboring this region, demonstrating similar C-terminal α-helix, which may contribute to AP-1 binding for MHC-I downregulation. These results provide new insights into the distinct pathogenesis of HIV-2 infection.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Christopher B. Gelbmann ◽  
Robert F. Kalejta

ABSTRACTThe human cytomegalovirus (HCMV) UL138 protein downregulates the cell surface expression of the multidrug resistance-associated protein 1 (MRP1) transporter. We examined the genetic requirements within UL138 for MRP1 downregulation. We determined that the acidic cluster dileucine motif is essential for UL138-mediated downregulation of MRP1 steady-state levels and inhibition of MRP1 efflux activity. We also discovered that the naturally occurring UL138 protein isoforms, the full-length long isoform of UL138 and a short isoform missing the N-terminal membrane-spanning domain, have different abilities to inhibit MRP1 function. Cells expressing the long isoform of UL138 show decreased MRP1 steady-state levels and fail to efflux an MRP1 substrate. Cells expressing the short isoform of UL138 also show decreased MRP1 levels, but the magnitude of the decrease is not the same, and they continue to efficiently efflux an MRP1 substrate. Thus, the membrane-spanning domain, while dispensable for a UL138-mediated decrease in MRP1 protein levels, is necessary for a functional inhibition of MRP1 activity. Our work defines the genetic requirements for UL138-mediated MRP1 downregulation and anticipates the possible evolution of viral escape mutants during the use of therapies targeting this function of UL138.IMPORTANCEHCMV UL138 curtails the activity of the MRP1 drug transporter by reducing its steady-state levels, leaving cells susceptible to killing by cytotoxic agents normally exported by MRP1. It has been suggested in the literature that capitalizing on this UL138-induced vulnerability could be a potential antiviral strategy against virally infected cells, particularly those harboring a latent infection during which UL138 is one of the few viral proteins expressed. Therefore, identifying the regions of UL138 required for MRP1 downregulation and predicting genetic variants that may be selected upon UL138-targeted chemotherapy are important ventures. Here we present the first structure-function examination of UL138 activity and determine that its transmembrane domain and acidic cluster dileucine Golgi sorting motif are required for functional MRP1 downregulation.


Sign in / Sign up

Export Citation Format

Share Document