scholarly journals Characterization of Hepatic-specific Regulatory Elements in the Promoter Region of the Human Cholesterol 7α-Hydroxylase Gene

1997 ◽  
Vol 272 (6) ◽  
pp. 3444-3452 ◽  
Author(s):  
Allen D. Cooper ◽  
Jean Chen ◽  
Mary Jane Botelho-Yetkinler ◽  
Yicheng Cao ◽  
Takahiro Taniguchi ◽  
...  
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11508
Author(s):  
Yubing Yong ◽  
Yue Zhang ◽  
Yingmin Lyu

Background. We have previously performed an analysis of the cold-responsive transcriptome in the mature leaves of tiger lily (Lilium lancifolium) by gene co-expression network identification. The results has revealed that a ZFHD gene, notated as encoding zinc finger homeodomain protein, may play an essential regulating role in tiger lily response to cold stress. Methods. A further investigation of the ZFHD gene (termed as LlZFHD4) responding to osmotic stresses, including cold, salt, water stresses, and abscisic acid (ABA) was performed in this study. Based on the transcriptome sequences, the coding region and 5′ promoter region of LlZFHD4 were cloned from mature tiger lily leaves. Stress response analysis was performed under continuous 4 °C, NaCl, PEG, and ABA treatments. Functional characterization of LlZFHD4 was conducted in transgenic Arabidopsis, tobacco, and yeast. Results. LlZFHD4 encodes a nuclear-localized protein consisting of 180 amino acids. The N-terminal region of LlZFHD4 has transcriptional activation activity in yeast. The 4 °C, NaCl, PEG, and ABA treatments induced the expression of LlZFHD4. Several stress- or hormone-responsive cis-acting regulatory elements (T-Box, BoxI. and ARF) and binding sites of transcription factors (MYC, DRE and W-box) were found in the core promoter region (789 bp) of LlZFHD4. Also, the GUS gene driven by LlZFHD4 promoter was up-regulated by cold, NaCl, water stresses, and ABA in Arabidopsis. Overexpression of LlZFHD4 improved cold and drought tolerance in transgenic Arabidopsis; higher survival rate and better osmotic adjustment capacity were observed in LlZFHD4 transgenic plants compared to wild type (WT) plants under 4 °C and PEG conditions. However, LlZFHD4 transgenic plants were less tolerant to salinity and more hypersensitive to ABA compared to WT plants. The transcript levels of stress- and ABA-responsive genes were much more up-regulated in LlZFHD4 transgenic Arabidopsis than WT. These results indicate LlZFHD4 is involved in ABA signaling pathway and plays a crucial role in regulating the response of tiger lily to cold, salt and water stresses.


1998 ◽  
Vol 273 (4) ◽  
pp. 2277-2287 ◽  
Author(s):  
Daniel R. Stauffer ◽  
Beatrice N. Chukwumezie ◽  
Julie A. Wilberding ◽  
Elliot D. Rosen ◽  
Francis J. Castellino

1999 ◽  
Vol 31 (2) ◽  
pp. 108-114 ◽  
Author(s):  
Young-Ah Moon ◽  
Kyung-Sup Kim ◽  
Un-Hyung Cho ◽  
Do-Jun Yoon ◽  
Sahng-Wook Park

2004 ◽  
Vol 287 (4) ◽  
pp. G822-G829 ◽  
Author(s):  
Svetlana M. Nabokina ◽  
Hamid M. Said

Transcriptional regulation of expression of the human thiamin transporter-2 (the product of the SLC19A3 gene) is unknown. In this study, we cloned the 5′-regulatory region of the human SLC19A3 gene (2,016 bp), identified the minimal promoter region required for basal activity, demonstrated a critical role for specific cis-regulatory elements in determining the promoter activity, and confirmed activity and physiological relevance of the cloned SLC19A3 promoter in vivo. With the use of transiently transfected human intestinal epithelial Caco-2 cells and 5′-deletion analysis, the minimal promoter region required for basal activity of the SLC19A3 promoter was found to be encoded in a sequence between −77 and +59 by using the start of transcription initiation as position 1. This minimal region was found to contain a number of putative cis-regulatory elements, with a critical role for a stimulating protein-1 (SP1)/GC-box binding site (at position −48/−45 bp) established by means of mutational analysis. With the use of EMSA and supershift assays, the binding of SP1 and SP3 to the minimal promoter region was also demonstrated. In transiently transfected Drosophila SL2 cells, both SP1 and SP3 transactivated the SLC19A3 minimal promoter in a dose-dependent manner and in combination demonstrated an additive stimulatory effect. Functionality of the full-length SLC19A3 promoter was confirmed in vivo in transgenic mice expressing the promoter-luciferase reporter gene. These studies report the first characterization of the SLC19A3 promoter in vitro and in vivo and demonstrate the importance of an SP1 cis-regulatory element in regulating promoter activity of this important human gene.


Sign in / Sign up

Export Citation Format

Share Document