scholarly journals ATP-dependent Desensitization of Insulin Binding and Tyrosine Kinase Activity of the Insulin Receptor Kinase

1998 ◽  
Vol 273 (34) ◽  
pp. 22007-22013 ◽  
Author(s):  
Jean-Olivier Contreres ◽  
Robert Faure ◽  
Gerardo Baquiran ◽  
John J. Bergeron ◽  
Barry I. Posner
1990 ◽  
Vol 126 (1) ◽  
pp. 67-74 ◽  
Author(s):  
I. Guéritault ◽  
J. Simon ◽  
B. Chevalier ◽  
M. Derouet ◽  
M. Tixier-Boichard ◽  
...  

ABSTRACT The effects of the recessive and sex-linked dw gene on insulin sensitivity and liver insulin receptors were compared in normal (Dw-dw) and dwarf (dw-dw) brother or half-brother chickens. At 3·5 weeks of age, following an overnight fast, exogenous insulin (0–6·9 nmol/kg body weight) was slightly but significantly more hypoglycaemic in dwarf chickens. At 4 weeks of age, following an oral glucose load (2 g/kg), glucose tolerance was the same in both genotypes, whereas plasma insulin levels were greatly decreased in dwarf chickens. At 5 weeks of age, plasma concentrations of glucose and insulin were the same in both genotypes in the fasting state and decreased in the fed state in dwarf chickens. In liver membranes prepared from fasted chickens, insulin binding was increased in dwarf chickens, while the affinity of insulin receptors and the insulin-degrading activity of the membranes were the same in both genotypes. Following solubilization with Triton X-100, liver receptors were successively purified on lentil then wheat germ lectins. Autophosphorylation of the β-subunit did not differ between either the genotype or the nutritional (fed or fasted) state. In the basal state (in the absence of insulin) the tyrosine kinase activity of the receptor towards artificial substrate poly(Glu,Tyr)4:1 was significantly decreased in dwarf chickens by fasting. However, the change in tyrosine kinase activity of the receptor in response to insulin was similar, irrespective of the genotype and the nutritional state. Therefore, the slight increase in insulin sensitivity observed in vivo in dwarf chickens is accounted for, at least partly, by a slight increase in liver insulin receptor number, but not by a change in the kinase activity of liver insulin receptors. In addition, post-insulin receptor kinase events and/or GH-dependent counter-regulatory mechanisms may superimpose and increase the insulin sensitivity of dwarf chickens. Journal of Endocrinology (1990) 126, 67–74


1991 ◽  
Vol 260 (1) ◽  
pp. E1-E7 ◽  
Author(s):  
S. Azhar ◽  
J. C. Butte ◽  
R. F. Santos ◽  
C. E. Mondon ◽  
G. M. Reaven

We have examined insulin binding, autophosphorylation, and tyrosine kinase activity in detergent-solubilized and wheat germ agglutinin-purified insulin receptor preparations from four rat muscles of different fiber composition (i.e., tensor fascia latae, soleus, vastus intermedius, and plantaris). Insulin binding activity was similar in three of the four muscles but lower in tensor fascia latae. No significant differences were noted in the affinity of insulin for its receptor from various muscle types. Insulin receptor tyrosine kinase activity measured in the absence (basal) and presence of insulin (0.3-300 nM) was comparable in all muscle types (normalized to the amount of insulin bound). Insulin sensitivity, measured as the dose of insulin required for half-maximal activation of kinase activity, was also similar in all muscle types. Likewise, incubation of receptor preparations with [gamma-32P]ATP, Mn2+, and insulin (0.25-100 nM) resulted in a dose-dependent autophosphorylation of the beta-subunit (relative molecular weight approximately 95 kDa) with similar kinetics in all muscle types. In conclusion, these results show that the functional behavior of the insulin receptor autophosphorylation-kinase system (in vitro) is not changed by alterations in muscle fiber composition, indicating that differences in insulin sensitivity between different skeletal muscle types is probably not due to modulation of the insulin receptor phosphorylation system.


1991 ◽  
Vol 2 (1) ◽  
pp. 65-72 ◽  
Author(s):  
P Hubert ◽  
C Bruneau-Wack ◽  
G Cremel ◽  
Y Le Marchand-Brustel ◽  
C Staedel

We have shown previously that experimental modifications of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (Zajdela Hepatoma Culture, ZHC) affect both binding and biological actions of insulin. Discrepancies between insulin binding and actions implied a postbinding defect, responsible for the observed insulin resistance in lipid-treated cells. To elucidate the mechanism for this defect, we have studied insulin binding and insulin receptor kinase activity in partially purified receptor preparations from ZHC cells grown either in normal medium or in medium supplemented with linoleic acid or 25-hydroxycholesterol. Insulin binding to the lectin-purified insulin receptor showed only a small alteration in receptor affinity for the preparations from lipid-treated cells. Insulin-stimulated autophosphorylation of the beta-subunit of the insulin receptor, as well as insulin-induced phosphorylation of the artificial substrate poly(Glu,Tyr)4:1, was significantly decreased in the preparations from lipid-modified cells. Although differences in basal levels were observed, the magnitude of the insulin-stimulated kinase activity was significantly decreased in receptor preparations from lipid-treated cells. These findings indicate that experimental modification of the lipids of cultured hepatoma cells can produce in insulin receptor kinase activity changes that are proportional to the reduced insulin action observed in these cells.


1998 ◽  
Vol 275 (6) ◽  
pp. E934-E941 ◽  
Author(s):  
Fabio B. Lima ◽  
Ubiratan F. Machado ◽  
Ione Bartol ◽  
Patricia M. Seraphim ◽  
Doris H. Sumida ◽  
...  

Although the pineal gland influences several physiological systems, only a few studies have investigated its role in the intermediary metabolism. In the present study, male Wistar rats, pinealectomized or sham-operated 6 wk before the experiment, were submitted to both intravenous glucose tolerance tests (IVGTT) and insulin binding as well as glucose transport assays in isolated adipocytes. The insulin receptor tyrosine kinase activity was assessed in liver and muscle. The insulin secretory response during the IVGTT was impaired, particularly in the afternoon, and the glucose transport responsiveness was 33% lower in pinealectomized rats. However, no difference was observed in the insulin receptor number of adipocytes between groups as well as in insulin-stimulated tyrosine kinase activity, indicating that the initial steps in the insulin signaling were well conserved. Conversely, a 40% reduction in adipose tissue GLUT-4 content was detected. In conclusion, pinealectomy is responsible for both impaired insulin secretion and action, emphasizing the influence of the pineal gland on glucose metabolism.


Endocrinology ◽  
1987 ◽  
Vol 121 (6) ◽  
pp. 2007-2010 ◽  
Author(s):  
RENZO CORDERA ◽  
GABRIELLA ANDRAGHETTI ◽  
ROBERTO GHERZI ◽  
LUCIANO ADEZATI ◽  
ANTONIO MONTEMURRO ◽  
...  

1988 ◽  
Vol 254 (4) ◽  
pp. E394-E401 ◽  
Author(s):  
F. Cecchin ◽  
O. Ittoop ◽  
M. K. Sinha ◽  
J. F. Caro

We have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the beta-subunit and insulin receptor kinase activity using Glu80, Tyr20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristic of the receptors, as determined by electrophoretic mobilities of affinity labeled alpha-subunit and the phosphorylated beta-subunit, were normal in uremia. 125I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus our data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase.


1986 ◽  
Vol 234 (1) ◽  
pp. 59-66 ◽  
Author(s):  
H Häring ◽  
D Kirsch ◽  
B Obermaier ◽  
B Ermel ◽  
F Machicao

Catecholamine treatment of isolated rat adipocytes decreases insulin binding and inhibits insulin stimulation of the glucose-transport system. There is increasing evidence that the insulin signal is transmitted after insulin is bound to the receptor via a tyrosine kinase, which is an intrinsic part of the receptor. To find whether the receptor kinase is modified by catecholamines, we solubilized and partially purified the insulin receptor of isoprenaline-treated adipocytes and studied the effect of insulin on its kinase activity. (1) Insulin increased the tyrosine autophosphorylation of the insulin receptor kinase from catecholamine-treated cells only 4-fold, compared with a 12-fold stimulation in control cells. (2) The rate of insulin-stimulated 32P incorporation into the receptor of isoprenaline-treated cells at non-saturating [32P]ATP concentrations (5 muM) was decreased to 5-8% of the values for receptor from control cells. (3) 125I-insulin binding to the partially purified receptor from catecholamine-treated cells was also markedly decreased. The insulin receptor from catecholamine treated cells bound 25-50% of the amount of insulin bound by the receptor from control cells at insulin concentrations of 10 pM-0.1 muM. Part of the impaired insulin-responsiveness of the receptor kinase of catecholamine-treated cells is therefore explained by impaired binding properties; however, an additional inhibition of the kinase activity of the insulin receptor from catecholamine-treated cells is evident. (4) This inhibition of kinase activity decreased when the concentration of [gamma-32P]ATP in the phosphorylation assay was increased. A Lineweaver-Burk analysis revealed that the Km for ATP of the receptor kinase from isoprenaline-treated cells was increased to approx. 100 muM, compared with approx. 25 muM for receptor of control cells. (5) We conclude from the data that catecholamine treatment of rat adipocytes modulates the kinase activity of the insulin receptor by increasing its Km for ATP and that this is part of the mechanism leading to insulin-resistance in these cells.


1990 ◽  
Vol 258 (6) ◽  
pp. E964-E974
Author(s):  
B. L. Nyomba ◽  
V. M. Ossowski ◽  
C. Bogardus ◽  
D. M. Mott

To investigate the relationship of insulin receptor kinase with insulin resistance in humans, we studied insulin-sensitive tyrosine kinase activity in muscle biopsies taken from 20 Pima Indians [14 nondiabetics, 6 with non-insulin-dependent mellitus (NIDDM)] during euglycemic clamps, at insulin concentrations of approximately 68 microU/ml (low dose) and approximately 1,170 microU/ml (high dose). In the nondiabetics, the low dose, insulin-induced kinase activation in vivo was 1.5-fold the activity in the fasting state (P less than 0.05), whereas in the diabetics, the kinase activity actually decreased by 40% relative to fasting (P less than 0.05). The difference in delta-kinase in vivo was significant (P less than 0.01) between the two groups. Similarly, the kinase activation in vitro in response to 1 nM insulin was lower in diabetic subjects compared with nondiabetics (P less than 0.01). These data indicate that, in NIDDM, both in vitro and in vivo insulin-stimulated tyrosine kinase activity is impaired. Among nondiabetics, the kinase sensitivity to insulin, calculated as the ratio of the kinase activity at 1 nM insulin in vitro to the kinase activity at 100 nM insulin, was positively correlated with plasma insulin concentrations 2 h after an oral glucose load (r = 0.69, P less than 0.01). Thus, in nondiabetic subjects with insulin resistance, insulin activation of the kinase is not reduced, but the kinase sensitivity to insulin increases with increasing plasma insulin levels. Therefore, the site of insulin resistance in nondiabetic subjects is distal to the insulin receptor kinase. Furthermore, it is possible that circulating insulin, by increasing the kinase sensitivity to insulin, is a determinant of the receptor kinase activity.


1990 ◽  
Vol 259 (1) ◽  
pp. E111-E116 ◽  
Author(s):  
J. J. Boyd ◽  
I. Contreras ◽  
M. Kern ◽  
E. B. Tapscott ◽  
D. L. Downes ◽  
...  

Insulin-stimulated glucose uptake into muscle is depressed by high-fat-sucrose (HFS) feeding of rats. To investigate the mechanism of this insulin resistance, the in vivo activation of the insulin receptor kinase in liver and muscle of control and HFS-fed rats was determined. Rats were injected with glucose and insulin and killed 0, 5, 15, and 30 min after injection. Insulin binding was not changed in partially purified receptors from muscle of HFS rats. In control rats insulin receptor kinase activity was maximally stimulated threefold in liver at 5 min and fourfold in muscle at 15 min after insulin-glucose injection. The insulin-stimulated tyrosine kinase activity of receptors isolated from the liver of rats fed the HFS diet was decreased by 30% in comparison with the controls. In contrast, receptors isolated from muscle did not show any difference in basal or insulin-stimulated kinase activity between HFS-fed and control rats. Decreased in vivo activation of the insulin receptor kinase may be at least partially responsible for insulin resistance in liver. Because insulin binding and insulin stimulation of receptor kinase were normal in muscle of HFS-fed animals, it is concluded that the insulin resistance of glucose uptake into muscle is caused by a defect distal to the insulin receptor.


Sign in / Sign up

Export Citation Format

Share Document