scholarly journals The Transcription Factor Nuclear Factor I Mediates Repression of the GLUT4 Promoter by Insulin

1999 ◽  
Vol 274 (18) ◽  
pp. 12917-12924 ◽  
Author(s):  
David W. Cooke ◽  
M. Daniel Lane
1992 ◽  
Vol 12 (4) ◽  
pp. 1846-1855 ◽  
Author(s):  
A Riccio ◽  
P V Pedone ◽  
L R Lund ◽  
T Olesen ◽  
H S Olsen ◽  
...  

Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action.


1992 ◽  
Vol 12 (4) ◽  
pp. 1846-1855
Author(s):  
A Riccio ◽  
P V Pedone ◽  
L R Lund ◽  
T Olesen ◽  
H S Olsen ◽  
...  

Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action.


1990 ◽  
Vol 10 (10) ◽  
pp. 5098-5105
Author(s):  
K W Jones ◽  
J P Whitlock

In mouse hepatoma cells, the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases the transcription rate of the CYP1A1 gene, which encodes a cytochrome P-450 enzyme. In this study, we analyzed the DNA region immediately upstream of the CYP1A1 gene. A domain that extends upstream to nucleotide--166 was found to function as a transcriptional promoter. The promoter was silent when uncoupled from the dioxin-responsive enhancer located farther upstream. DNase footprinting experiments indicated that nuclear proteins interact with distinct domains of the promoter in a TCDD-independent fashion. Mutational analyses indicated that the CYP1A1 promoter contains at least three functional domains, including a TATAAA sequence, a CCAAT box transcription factor/nuclear factor I-like recognition motif, and a guanine-rich G box.


Sign in / Sign up

Export Citation Format

Share Document