scholarly journals Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the α2(XI) collagen gene. VOLUME 275 (2000) PAGES 12712-12718

2009 ◽  
Vol 284 (17) ◽  
pp. 11748.2-11748 ◽  
Author(s):  
Ying Liu ◽  
Haochuan Li ◽  
Kazuhiro Tanaka ◽  
Noriyuki Tsumaki ◽  
Yoshihiko Yamada
2000 ◽  
Vol 275 (17) ◽  
pp. 12712-12718 ◽  
Author(s):  
Ying Liu ◽  
Haochuan Li ◽  
Kazuhiro Tanaka ◽  
Noriyuki Tsumaki ◽  
Yoshihiko Yamada

1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


1996 ◽  
Vol 785 (1) ◽  
pp. 284-287 ◽  
Author(s):  
VÉRonique Lefebvre ◽  
Krish Mukhopadhyay ◽  
Guang Zhou ◽  
Silvio Garofalo ◽  
Chad Smith ◽  
...  
Keyword(s):  

1988 ◽  
Vol 8 (11) ◽  
pp. 4851-4857 ◽  
Author(s):  
P Bornstein ◽  
J McKay ◽  
D J Liska ◽  
S Apone ◽  
S Devarayalu

The first intron of the human collagen alpha 1(I) gene contains several positively and negatively acting elements. We have studied the transcription of collagen-human growth hormone fusion genes, containing deletions and rearrangements of collagen intronic sequences, by transient transfection of chick tendon fibroblasts and NIH 3T3 cells. In chick tendon fibroblasts, but not in 3T3 cells, inversion of intronic sequences containing a previously studied 274-base-pair segment, A274, resulted in markedly reduced human growth hormone mRNA levels as determined by an RNase protection assay. This inhibitory effect was largely alleviated when deletions were introduced in the collagen promoter of plasmids containing negatively oriented intronic sequences. Evidence for interaction of the promoter with the intronic segment, A274, was obtained by gel mobility shift assays. We suggest that promoter-intron interactions, mediated by DNA-binding proteins, regulate collagen gene transcription. Inversion of intronic segments containing critical interactive elements might then lead to an altered geometry and reduced activity of a transcriptional complex in those cells with sufficiently high levels of appropriate transcription factors. We further suggest that the deleted promoter segment plays a key role in directing DNA interactions involved in transcriptional control.


1996 ◽  
Vol 271 (8) ◽  
pp. 4298-4303 ◽  
Author(s):  
Paul H. Krebsbach ◽  
Ken Nakata ◽  
Suzanne M. Bernier ◽  
Osamu Hatano ◽  
Tomoyuki Miyashita ◽  
...  

1996 ◽  
Vol 134 (6) ◽  
pp. 1573-1582 ◽  
Author(s):  
N Tsumaki ◽  
T Kimura ◽  
Y Matsui ◽  
K Nakata ◽  
T Ochi

Type XI collagen is a structural component of the cartilage extracellular matrix and plays an important role in skeletal morphogenesis. As a step toward defining the molecular mechanisms responsible for the regulation of type XI collagen expression, we characterized the promoter region of the mouse alpha 2(XI) collagen gene (Coll1a2). We also generated transgenic mice harboring various fragments of the promoter and the first intron of Coll1a2 linked to the Escherichia coli beta-galactosidase gene to identify the cis-acting elements responsible for tissue- and site-specific expression during development. Cloning and sequence analysis of the 5' flanking region of Coll1a2 showed that the putative 3' end of the retinoid X receptor beta gene was located 742 bp upstream of the Coll1a2 start site. This suggested that the promoter region of Coll1a2 was localized within this 742-bp sequence, which contained multiple consensus regulatory elements. Examination of the transgenic mice revealed that the longest DNA construct (containing the entire promoter and first intron sequences) directed lacZ expression in the notochord as well as in the primordial cartilage throughout the body, with the pattern of expression mimicking that of endogenous Coll1a2 transcripts. On the other hand, deletion of the upstream approximately 290 bp resulted in the elimination of lacZ expression in the primordial cartilage of the carpals, tarsals, and vertebral bodies, whereas lacZ expression in the notochord and in the other primordial cartilage elsewhere was not affected. Deletion of the first intron sequence also resulted in the loss of lacZ expression in the primordial cartilage of the carpals, tarsals, and vertebral bodies, as well as in the notochord. These results demonstrate that the upstream 742-bp and first intron segments of the mouse Coll1a2 gene contain the necessary information to confer high level tissue-specific expression in mouse embryos. In addition, our observations suggest the presence of site-specific cis-acting elements that control Coll11a2 gene expression in different cartilaginous components of the skeleton.


Sign in / Sign up

Export Citation Format

Share Document