scholarly journals Non-coordinate Regulation of Endogenous Epithelial Sodium Channel (ENaC) Subunit Expression at the Apical Membrane of A6 Cells in Response to Various Transporting Conditions

2000 ◽  
Vol 275 (51) ◽  
pp. 39886-39893 ◽  
Author(s):  
Ora A. Weisz ◽  
Jun-Min Wang ◽  
Robert S. Edinger ◽  
John P. Johnson
2003 ◽  
Vol 284 (2) ◽  
pp. C404-C414 ◽  
Author(s):  
Diego Alvarez de la Rosa ◽  
Cecilia M. Canessa

The purpose of this study was to examine the role of the serum- and glucocorticoid-induced kinase (SGK) in the activation of the epithelial sodium channel (ENaC) by aldosterone, arginine vasopressin (AVP), and insulin. We used a tetracycline-inducible system to control the expression of wild-type (SGK[Formula: see text]), constitutively active (S425D mutation; SGK[Formula: see text]), or inactive (K130M mutation; SGK[Formula: see text]) SGK in A6 cells independently of hormonal stimulation. The effect of SGK expression on ENaC activity was monitored by measuring transepithelial amiloride-sensitive short-circuit current ( I sc) of transfected A6 cell lines. Expression of SGK[Formula: see text] or SGK[Formula: see text] and aldosterone stimulation have additive effects on I sc. Although SGK could play some role in the aldosterone response, our results suggest that other mechanisms take place. SGK[Formula: see text] abrogates the responses to AVP and insulin; hence, in the signaling pathways of these hormones there is a shared step that is stimulated by SGK. Because AVP and insulin induce fusion of vesicles to the apical membrane, our results support the notion that SGK promotes incorporation of channels in the apical membrane.


2009 ◽  
Vol 296 (2) ◽  
pp. F284-F290 ◽  
Author(s):  
Jing Wang ◽  
Zhi-Ren Zhang ◽  
Chu-Fang Chou ◽  
You-You Liang ◽  
Yuchun Gu ◽  
...  

Cyclosporine A (CsA) is an efficient immunosuppressant used for reducing allograft rejection but with a severe side effect of causing hypertension. We hypothesize that the renal epithelial sodium channel (ENaC) may participate in CsA-induced hypertension. In the present study, we used the patch-clamp cell-attached configuration to examine whether and how CsA stimulates ENaC in A6 distal nephron cells. The data showed that CsA significantly increased ENaC open probability. Since CsA is an inhibitor of the ATP-binding cassette A1 (ABCA1) transporter, we employed 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), another ABCA1 inhibitor, and found that DIDS mimicked the effects of CsA on ENaC basal and cholesterol-induced activity but without any additive effect if combined with CsA. CsA and DIDS also had an identical effect on reduced ENaC activity caused by cholesterol extraction. ABCA1 protein was detected in A6 cells by Western blot analysis. Confocal microscopy data showed that both CsA and DIDS facilitated A6 cells to uptake cholesterol. Since enhanced ENaC activity is known to cause hypertension, these data together suggest that CsA may cause hypertension by stimulating ENaC through a pathway associated with inhibition of ABCA1 and consequent elevation of cholesterol in the cells.


2007 ◽  
Vol 282 (52) ◽  
pp. 37402-37411 ◽  
Author(s):  
Warren G. Hill ◽  
Michael B. Butterworth ◽  
Huamin Wang ◽  
Robert S. Edinger ◽  
Jonathan Lebowitz ◽  
...  

2003 ◽  
Vol 285 (5) ◽  
pp. F833-F842 ◽  
Author(s):  
Ora A. Weisz ◽  
John P. Johnson

The epithelial sodium channel (ENaC) is composed of the three homologous subunits α, β, and γ. The basic oligomerization process inferred from all studies in heterologous systems is preferential assembly of the three subunits into a single oligomeric form. However, there is also considerable evidence that channels composed of only α-, αβ-, or αγ-subunits can form under some circumstances and that individual subunits expressed in heterologous systems can traffic to the cell membrane. In cells that express endogenous ENaC, the three subunits are often synthesized in a differential fashion, with one or two subunits expressed constitutively while the other(s) are induced by different physiological stimuli in parallel with increased ENaC activity. This phenomenon, which we term noncoordinate regulation, has been observed for both whole cell and apical membrane ENaC subunit expression. Several other heteromeric membrane proteins have also been observed to have differential rates of either turnover or trafficking of individual subunits after biosynthesis and membrane localization. Here, we examine the possibility that noncoordinate regulation of ENaC subunits may represent another mechanism in the arsenal of physiological responses to diverse stimuli.


2016 ◽  
Vol 292 (1) ◽  
pp. 375-385 ◽  
Author(s):  
Christine A. Klemens ◽  
Robert S. Edinger ◽  
Lindsay Kightlinger ◽  
Xiaoning Liu ◽  
Michael B. Butterworth

2002 ◽  
Vol 444 (4) ◽  
pp. 549-555 ◽  
Author(s):  
Lisette Dijkink ◽  
Anita Hartog ◽  
René Bindels ◽  
Carel van Os

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 724-724
Author(s):  
Shyama M E Masilamani ◽  
Gheun-Ho Kim ◽  
Mark A Knepper

P170 The mineralocorticoid hormone, aldosterone increases renal tubule Na absorption via increases in the protein abundances of the α-subunit of the epithelial sodium channel (ENaC) and the 70 kDa form of the γ- subunit of ENaC (JCI 104:R19-R23). This study assesses the affect of dietary salt restriction on the regulation of the epithelial sodium channel (ENaC) in the lung and distal colon, in addition to kidney, using semiquantitative immunoblotting. Rats were placed initially on either a control Na intake (0.02 meq/day), or a low Na intake (0.2 meq/day) for 10 days. The low salt treated rats demonstrated an increase in plasma aldosterone levels at day 10 (control = 0.78 + 0.32 nM; Na restricted = 3.50 + 1.30 nM). In kidney homogenates, there were marked increases in the band density of the α-subunit of ENaC (286 % of control) and the 70 kDa form of γ-subunit of ENaC (262 % of control), but no increase in the abundance of the β-subunit of ENaC. In lung homogenates, there was no significant change in the band densities of the α, β, or γ subunits of ENaC. In distal colon, there was an increase in the band density of the β-subunit of ENaC (311 % of control) and an increase in both the 85 kDa (2355% of control) and 70 kDa (843 % of control) form of the γ subunit of ENaC in response to dietary Na restriction. However, there was no significant difference in the band density of the α-subunit of ENaC. These findings demonstrate tissue specific regulation of the three subunits of ENaC in response to dietary salt restriction.


Sign in / Sign up

Export Citation Format

Share Document