scholarly journals Novel Role of Phosphatidylinositol 3-Kinase in CD28-mediated Costimulation

2000 ◽  
Vol 276 (12) ◽  
pp. 9003-9008 ◽  
Author(s):  
Yohsuke Harada ◽  
Eri Tanabe ◽  
Ryosuke Watanabe ◽  
Bonnie D. Weiss ◽  
Akira Matsumoto ◽  
...  
2004 ◽  
Vol 279 (7) ◽  
pp. 6204
Author(s):  
Parimal Sheth ◽  
Shyamali Basuroy ◽  
Chunying Li ◽  
Anjaparavanda P. Naren ◽  
Radhakrishna K. Rao

2004 ◽  
Vol 287 (4) ◽  
pp. L843-L851 ◽  
Author(s):  
Christie P. Thomas ◽  
Jason R. Campbell ◽  
Patrick J. Wright ◽  
Russell F. Husted

H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+ transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631–L641, 2002). To understand the molecular basis for the stimulation of Na+ transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on αβγ-epithelial Na+ channel (ENaC) and sgk1 expression. Na+ transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+ transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in α-ENaC mRNA and protein but without a detectable increase in βγ-ENaC and sgk1. The early effect of cAMP on Na+ transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+ channels to the apical cell surface whereas the sustained effect requires the synthesis of α-ENaC.


2021 ◽  
Author(s):  
Max Gass ◽  
Sarah Borkowsky ◽  
Marie-Luise Lotz ◽  
Rita Schroeter ◽  
Pavel Nedvetsky ◽  
...  

Drosophila nephrocytes are an emerging model system for mammalian podocytes and podocyte-associated diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical-basal polarity. Here we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-Kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-Kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.


2000 ◽  
Vol 381 (11) ◽  
pp. 1139-1141 ◽  
Author(s):  
A. Gypakis ◽  
H.K. Wasner

Abstract It has been suggested that downstream signaling from the insulin receptor to the level of the protein kinases and protein phosphatases is accomplished by prostaglandylinositol cyclic phosphate (cyclic PIP), a proposed second messenger of insulin. However, evidence points also to both phosphatidylinositol 3-kinase, which binds to the tyrosine phosphorylated insulin receptor substrate-1, and the Ras complex in insulin's downstream signaling. We have examined whether a correlation exists between these various observations. It was found that wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, prevented insulin-induced, as well as cyclic PIP-induced activation of glucose transport, indicating that PI 3-kinase action on glucose transport involves downstream signaling of both insulin and cyclic PIP. Wortmannin has no effect on cyclic PIP synthase activity nor on the substrate production for cyclic PIP synthesis either, indicating that the functional role of PI 3-kinase is exclusively downstream of cyclic PIP.


2018 ◽  
Vol 34 (3) ◽  
pp. 452-462 ◽  
Author(s):  
Leandra C. Constantino ◽  
Luisa B. Binder ◽  
Samuel Vandresen-Filho ◽  
Giordano G. Viola ◽  
Fabiana K. Ludka ◽  
...  

2000 ◽  
Vol 278 (4) ◽  
pp. G532-G541 ◽  
Author(s):  
Timothy M. Pawlik ◽  
Rüdiger Lohmann ◽  
Wiley W. Souba ◽  
Barrie P. Bode

Burn injury elicits a marked, sustained hypermetabolic state in patients characterized by accelerated hepatic amino acid metabolism and negative nitrogen balance. The transport of glutamine, a key substrate in gluconeogenesis and ureagenesis, was examined in hepatocytes isolated from the livers of rats after a 20% total burn surface area full-thickness scald injury. A latent and profound two- to threefold increase in glutamine transporter system N activity was first observed after 48 h in hepatocytes from injured rats compared with controls, persisted for 9 days, and waned toward control values after 18 days, corresponding with convalescence. Further studies showed that the profound increase was fully attributable to rapid posttranslational transporter activation by amino acid-induced cell swelling and that this form of regulation may be elicited in part by glucagon. The phosphatidylinositol-3-kinase (PI3K) inhibitors wortmannin and LY-294002 each significantly attenuated transporter stimulation by amino acids. The data suggest that PI3K-dependent system N activation by amino acids may play an important role in fueling accelerated hepatic nitrogen metabolism after burn injury.


Sign in / Sign up

Export Citation Format

Share Document