scholarly journals NTE1-encoded Phosphatidylcholine Phospholipase B Regulates Transcription of Phospholipid Biosynthetic Genes

2009 ◽  
Vol 284 (52) ◽  
pp. 36034-36046 ◽  
Author(s):  
J. Pedro Fernández-Murray ◽  
Gerard J. Gaspard ◽  
Stephen A. Jesch ◽  
Christopher R. McMaster
Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
SA Van der Sar ◽  
KM Fisch ◽  
C Gurgui ◽  
TA Nguyen ◽  
J Piel ◽  
...  

1969 ◽  
Vol 10 (6) ◽  
pp. 636-641
Author(s):  
R. Hanumantha Rao ◽  
D. Subrahmanyam

2021 ◽  
Vol 7 (5) ◽  
pp. 344
Author(s):  
Javier Veloso ◽  
José Díaz

The non-pathogenic Fusarium oxysporum Fo47 is able to protect Capsicum annuum (pepper) but not in Solanum lycopersicum (tomato) against the pathogen Verticillium dahliae. Transcriptomics of the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47. Ethylene related genes were present among the DE genes in both plants, and the up-regulation of ethylene biosynthetic genes was observed to be triggered during the interaction of both plants with Fo47. The treatment with MCP (1-Methylcyclopropene, an ethylene-competitive inhibitor) reduced the Fo47 protection in pepper against Verticillium dahliae. Intriguingly, Fo47 was able to protect the ethylene-insensitive tomato mutant Never-ripe (Nr) against Verticillium dahliae, but not the tomato wilt type cv Pearson. Overall, ethylene is shown to be an important player in the response to Fo47, but its role depends on the host species.


2000 ◽  
Vol 13 (1) ◽  
pp. 122-143 ◽  
Author(s):  
Mahmoud A. Ghannoum

SUMMARY Microbial pathogens use a number of genetic strategies to invade the host and cause infection. These common themes are found throughout microbial systems. Secretion of enzymes, such as phospholipase, has been proposed as one of these themes that are used by bacteria, parasites, and pathogenic fungi. The role of extracellular phospholipase as a potential virulence factor in pathogenic fungi, including Candida albicans, Cryptococcus neoformans, and Aspergillus, has gained credence recently. In this review, data implicating phospholipase as a virulence factor in C. albicans, Candida glabrata, C. neoformans, and A. fumigatus are presented. A detailed description of the molecular and biochemical approaches used to more definitively delineate the role of phospholipase in the virulence of C. albicans is also covered. These approaches resulted in cloning of three genes encoding candidal phospholipases (caPLP1, caPLB2, and PLD). By using targeted gene disruption, C. albicans null mutants that failed to secrete phospholipase B, encoded by caPLB1, were constructed. When these isogenic strain pairs were tested in two clinically relevant murine models of candidiasis, deletion of caPLB1 was shown to lead to attenuation of candidal virulence. Importantly, immunogold electron microscopy studies showed that C. albicans secretes this enzyme during the infectious process. These data indicate that phospholipase B is essential for candidal virulence. Although the mechanism(s) through which phospholipase modulates fungal virulence is still under investigations, early data suggest that direct host cell damage and lysis are the main mechanisms contributing to fungal virulence. Since the importance of phospholipases in fungal virulence is already known, the next challenge will be to utilize these lytic enzymes as therapeutic and diagnostic targets.


2021 ◽  
Author(s):  
Markus Gressler ◽  
Nikolai A. Löhr ◽  
Tim Schäfer ◽  
Stefanie Lawrinowitz ◽  
Paula Sophie Seibold ◽  
...  

This article comprehensively reviews basidiomycete enzymes and their genes involved in natural product biosynthesis and primarily focuses on typical pathways and enzymes, along with the methods applied to investigate mushroom metabolism.


2021 ◽  
Vol 99 ◽  
pp. 103187
Author(s):  
Ishrat Jabeen ◽  
Muhammad Hafiz ◽  
Wickneswari Ratnam ◽  
Tilakavati Karupaiah ◽  
Sharifa Dipti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document